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PART 2: PERTURBATIONS DUE TO AN ARBITRARY Jp

by
R. H. Gooding

SUMMARY

This Report continues the¢ presentation of the untruncated orbital theory
begun in Technical Report 8806, The effects of the general zonal harmonic,
Jp + are now covered, the main assults being a trio of formulae for perturbations
in the spherical-polar coordinates introduced in the previous paper The formu-
lae are only first~order in J; 4 but, in conjunction with the second-order
results for J; published in Part 1, the complete «et oJ formulae may be regar-
ded as constituting a second-order theory, the Earth's J; being ruch laxger
than Jy for ¢ > 2.

The mean slements of the theory are defined in such a way that, for each
Jy + the coordinate~perturbation formulae have their simplest possible form, with
no occurrence of zero denominators. The general formulae are used in a rederiva-
tion of the results for J3 , given in Part i, and in a derivation of results for
3.

Numerical comparisons with reference orbits aze held over to a later report
{Part 3).
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1 INTRODUCTION

This Report is the second of an intended trilogy devoted to satellite
motion about an axi-symmetric primary, i.e. about a gravitating solid of
revolution. Thus it continues the exposition of Ref 1, which will henceforth be
referred to as 'Part 1', Part 1 brought together the principles of an approach
to orbit modelling in which lengthy expressions for short-periocd perturbations in
the usual osculating elements are compressed into concise expressions for pert-
urbations in a particular set of spherical-polar coordinates; it then proceeded
into the presentation of a complete second-order theory for perturbations due to
the zonal harmonic Jz , and a complete first-order theory for Jy . When the
primary body is the Earth, J3 {and every subsequent Jp )} is of order ng , 30
Part 1 may be regarded as describing (for Jp and J3 only) a compleie seconds
order theory for Earth satellites, where 'first order' refers to effects of
relative magnitude 1073, Though Part 1 has only recently been publishei, a
résums2 of the theory had ueen given much earlier.

Two other papers are relevant to the maturation of the trilogy: a re:ent
one3 on mean elements (as used in Part 1), with particular refererce to the
relation between mean semi-major axis and mean mean motion; and a much earlior
(and more important) paper“, of sianllar title to the trilogy's, that establisred
formulae for secular and long-periud perturtations due to the general Jy (so
general, in fact, that £ could be negative, the formulae then being applicable
to lunisolar perturbationsy. The present Report effectively combines the new
approach of Part 1 with the gencral principles and notation of Ref 4, the result
being a complete theory for the zonal harmonics; secular and long-period
perturbations are applied to mean orbital elements, and short-period
perturbations to coordinates.

Part 3 of tne trilogy will be largely devoted to the way in which the mean
elements evolve over periods of time longer than just a small number of orbital
revolutions., This topic, which was given limited attention i{n Part 1, is
entirely neglected in Part 2, It is intended that Parv 3 will also give detalls
of the Fortran program(s) written to evaluate the accuracy of the overall
approach, using harmonics up to Jy . (The variations in the mean elements are
computed by a technique that involves a numerical component of an otherwise
analytical model, aspects of this technique were described in the papcr5 that
originally outlined the author's philesophy of coupling a hybrid computational
procedure *o the coordinate-perturbation approach.)
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Other autbors have published first-order formulae for satelllite
perturbaticas due to the geopotential; they usually address the subject more
generally than here, by covering the tesseral harmonics as well as the zonal
harmonics. The first entirely general resuits were derived by Groveséy in an
analysis of formidable complexity, whilst the classic eference is the text-book
of Kaulal. The very generality of the formulae a Refs 6 and 7 makas it
difficult to write down expressions for individual effects, however, and it {s
not even easy to show that the two se:s of formulae are formally equivalent (the
full first-order expression for the perturbation in mean anomaly is omitted in
Ref 6, and the supplementary terms are only added as an afterthought in Ref 7).

Much of the difficulty in the general analysis arises from the need, when
covering the tesseral harmonics as well as the zonal harmonics, to allow for the
rotation of the primary. The uniformity of this rotation with time makes {t
natural to work with M (mean anomaly), rather than v (true anomaly), as
integration variable, but this inevitably leads to infinite summations. When the
analysis is restricted to the zonal harmonics, however, use of v (rather than M)
leads to expressions that are free of infinite summation, and Zariropoulos8 has
recently published untruncated formulae for the first-order perturbations in the
orbital elements due tc the general Jy . The formulae of Ref 8§ are much more
explicit thun those in Refs 6 and 7, but this {s unfortunately at the expense of
some very long expressions - it takes more than five pages to express the basic
formulae, and even then the supplementary terms of the perturbdation in M are
again absent. Now it will emerge from the present Report that the formulae of
Zafiropoulos can be expressed much more concisely. The real breakthrough comes,
however, when the short-period perturbations in elements are replaced by
perturbations in coordinates. If it were not for the rotation of the primary,
this procedure ¢ould be immediately extended to the tesseral harmonica*; for
orbits of sufficlently low eccentricity there is no difficulty, and very simple
general fornulae were given in Refs 5 and 9, having originally been derived
during o stud;10 of Navstar/GPS.

As Ww.:h Part 1, a List of Symbols is appended to the Report; 1t ls almost
entirely ccisistent uith the List of Part 1, the few e:rceptlions being noted. The
meaning of every new symbol is fully specified in the text, but only minimal

* Appendix A, which ia in the nature of a posiscript, outlines what is involved
in the extension for a non-rotating primary, and a separate paper is planned
for later publication.
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explanation is given for those carried over from Part 1. This is true, in
particular, for standard symbolism: thus we note, siraight away, that the
orbital elements used are a, e, {, %, w and M , an arbiirary one of which is
denoted (generically) by  ; also M = ¢ + / , where [ {s s.aorthand for

In dt , the integral being taken from epoch to current time. We continue to make
use of the quasi-elements ¢ , p and L , really only defined at the
differential level; thus, dy = dw + c df (where ¢ = cos | 55 dp = do + g dy
(where q2 =1 -e2 ) and dL = dM + q dy

As explained in Part 1, each osculating element, ¢ , may be regarded as
the sum of a mean element, 7 , and a short-periocd perturbation, 6% , so that

[ AL g m

A 'semi~mean' element, { , is also needed (see section 3.2 of Part 1), but in
Part 2 we will usually ignore the distinction between T and § . The effect of
this neglect {s that we do not distinguish between the quagtitles denot :d by

8 o, sp; and &z in Part 1, normally using &% here ir the sense of sp; ol
Part 1; towards the end of the Report {in deriving the perturbations due to

Jy , in section 8.5), we remind the reader of the additicnal terms (spli% betaseen
§ and &z , as explained in Part 12 that are needed to express (first-order)
perturbations {n full. Not even the distinction between osculating elements and
mean elements {s of significance ir evaluating the right<hand sides of equations
in general, since second-order perturbations are not taken into account in

Part 2, but the following important distinction (on left-hand sides) between 4
and f {s worth noting: Lagrange's planetary equation for { constitutes the
starting point of analysis for the element ( , whereas a formula for f is part
of the goal of that analysis.

The analysis {s greatly facilitated by using, instead of w and u
(argument of latitude), the modified quantities w' and u' , where

W = @ and u' = ou - g, ()
To avoid any confusion, {t is remarked that the use of the accent (prime sign)
here has a connotation entirely different from that which distinguishes a

{osculating seni-major axis) from a' ; the lattar quantity is an absolute
constant of the mot: n (under zonal harmonics only), whicn (as shown in Part 1)
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constitutes the best cholce for mean semi-major axis (¥), to whatever order the
analysis is conducted. With u' now introduced, it is convenient to define here
the much-used quantities Cg and S? ;  thus*

¢ « cos (v +ku)  and s = sin (gv 4 ku') . (3)

When there 18 no ambiguity in regard to k , the superfix (but never the suffixy
will often be omitted. (Warning: Cy and S; , as used In Part 1, tdentify with
-c§_2 and -S?_Z here.)

As the primary is assumed axi-symmetric, we start from the potential

function w/r + I U, , where the individual terms of the disturbing function are
given (in the usual notation) by

Uy = =53 R0 py(sin ) . ),
The value of % in the summation s normally taken to run from 2 upwards, since
the cases L =0 and 2 = 1 are essentially trivial, but the general formulae
to be developed cover the case £ = 1 without difficulty; both 'trivial' cases
are instructive and are interpreted in section 8, following Ref 4. If the
concept of an axi-symmetric primary is generalized to allow for mass outside the
orbital region, as well as inside, then (4) can be extended to cover negative

2 , as in Ref 4; the only change needed in the expressien for U, 1a that Py
is replaced by P_z_‘ . Qur overall requirement is to integrate the planetary
equations for the general U% , thereby obtaining the first-order contributions
to each T and 6C , and then to combine the &g (for the six elements) into

ér, §b and éw , the corresnonding perturbations in the spherical-polar
coordinate system attached to the mean orbital plane; the latter i{s specified by
T and T, and the transformation from the (r,b,w)-coordinate system to the
usual rectangular equatorial system is described in detail in Part 1.

In section 2 we decompose U, as

U, = Tuk, (5)
vt h

* This notation leads to more concise expressions than {f the trigonometric
argument was Jv + ko' , as was originally planned; the disadvantage is that

the Kepler-constant quantities are now C.p and S.g , rather than Cp and Sy .
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where 0 Sk S and UE is only non-zero when k has the same parity as 1
(or as =% - 1, in the extensfon to % < 0) . The decomposition arises as § ,
tn Uy , 1= effectively replaced by 1 , and this invo.ves the lntroduction of
certain “.uilles of inclination functions. The functions Ag(lf were originally
introduced in Ref 4 and are used again, but quantities Agy , proportional to the
Ai(li values, are actually more convenient. Related functions, and asscolated
quantities, are also introduced, and recurrence relations are given. These
relations (and corresponding relations for the eccentrieity functions, referred
to in the next paragraph) are required here in the development of the theory, but
chey are also important as computational aids in the implementatio: f the
theory. The UE can be treated separately in all the analysis up to the
derivation of the ér and the &w , but there is a complication in the
derivation of éb ; this will be handled by the introduction of another index,

% , which 1s always of the opposite parity to £ {and hence %),

Following the elimination of 8 , we must alsc eliminate r , using the
basie formula of the ellipse

g ~ 1+vcosv, 16)

before the planetary equations can be integrated. This involves fam{lies of
eccentricity functions, which are introduced in section 3. The functions Bi(e)
were originally introduced in Ref 4, but the quantities BlJ , proportional to
them, are actually more useful. Recurrence relations are glven, and these are
even more important than the relations for the inclination functions., 7Tt is
{mplicit in the use of the BlJ that every Ug could be further decomposed,
into 2 UEJ say, but we prefer not to do this, postponing the introduction of
the BLJ unt{l U% ,, in each planetary equation, has been eliminated in favour
of an explicit expressicn, thus the notatlon UEJ is not needed.

The development of each planetary equation, via first the Alk and then
the BlJ , is the topic of section 4. As already remarked, we avoid infiaite
summations by retaining v as an argument of the equation (as opposed to
eliminaiing it in favour of M ), and indeed we make it the integration variable
by applying the relation

%% ~ nq3 (prr)2 n
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Each equation now expresses d /dv , rather than T, as a (finite) sum of terms
in v . Each such term {s just a multipie of C§ or SE ,, @s it turns out, so
the integration of the equation is i{mmediate. Terms with k + j # 0 lead to the
8z by definition. Terms with k + J « 0 , on tre other hand, are effectively
constant over the short term, and contribute directly to f ; when k = 0 (and
so also J§ = 0 ), the integrated contribution s a secular perturbation, whilst
the terms with Xk # 0 contribute to the long-period perturbation. The
distinction is {mportant for Earth satellites, because the secular variation of
w (due to Jp) must be allowed for in integrating the perturbation, but the
subject was dealt with in Part 1 and will be picked up again {n Part 3; there
will be no further reference in Part 2 to this coupling between Jp and the
other J, .

Formulae for the flk (? due to Ug ) are collected in section 5, whilst
the reduction of the appropriate 67 to formulae for ér , &b and dw !s the
subJect of the next two (and much longeri sections. As described in previous
pasers there {s an important distinction between the integrations required for
the 1« types of term: for the flk ,, the process leads to definite integrals
{see Parts 1 and 3). necessarily zero if taken over zero time from epoch; In
tk-components of the & , on the other hand, the process leads to epoch-
independent indefinite {ntegrals that (apart from the complication of semi-mean
elements) satisfy (1). But {ndefinite {ntegrals contain arbitrary constants,
where a 'constant' in the present context (s any quantity that is independent of
the fast-varying v , {.e. would be a true constant for motion in a fixed
ellipse. It is only when theso constants are all assigned that (at the first-
order level) the mean elements, T , are fully defined.

It has been noted that enormous advantage accrues from taking & to be the
exact quantity a' (defined by the energy integral, as explained in Part 1), but
there are no {mmediately compelling rasasons for associating particular constants
with any of the other five elements. We therefore base our choice on the
philosophy of making the expressions for &r , §b and d&w as simple as
possible. These expresaions, which constitute the most important results of the
Report, are presented in their general form in section 6; each of the three
expressions involves a summation over the i{ndex j, with the {ntegration constants
for tne elements (other than a ) not yet taken into account.
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In the general formulae just referred to, certafn values of j in the
summations would involve terms of zero denominator, and it {s by the eliainatior
of all these terms that the integration constants (other than for a ) are
chosen. This i{s the subject matter for section 7, which completes the entire
analysis. An outline of the material in this section is as follows. First,
the formuia for the mandatory constant in &a (for sach UE ) 1s recorded,
esgentfally as a matter of completeness., Second, the constants are derived for
¢ and 6M that valldate the omission of the terms with particular ) that
would otherwise arise in &r . Third, the constants are derived for &1 and &2
that do the same thing for &b . Fourth, special terms (with particular § )
in &w , that could not be included in section 6 because t..y are induced by the
constants in se and &M , are obtained. Finally, the constant in &w (for
earh U% ) is derived.

Examples of the general formulae of section 6, together with the special
terms in W derived in secticn 7, are given in section 8: first, for the
trivial cses 2 =0 and & « 1, the interest in which "as been remarked; then
for £ =2 and & = 3, leading (as a useful overall check; to results already
known from Part 1; finally, for % = 4, leading to formulae not hitherto
published.

2 FUNCTIONS OF INCLINATION REQUIRED IN EXPANDING THE POTENTIAL

Following Ref 4, we expand Pg(sin 8) , required in (D)h via the addition
theorem for zonal harmonics {or Legendre polynomials); thus

A P
Pstn 8 = 1w B8 B5(0) Pito) cos kur (8

Here up =1, ug =2 Iif k>0, and the Legendre function P; is defined by

akp,(c)
s¥ —tl

9}
dck

pi(e)
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The second factor (the k'th derivative) in (9) is a polynomial fn c ,
which {witk k £ %) does not vanish wher ¢ = 1, its value then being
(% + ®)17{2% k! (& - K)!} . Eence this factor may be normalized%, in a certain

aseful sense, and we write

dkpe(e) {4+ K1

K
B, 10
dek 2K k1 (4 = K 2(4) to

where Aﬁ(!$ {s a pure polynomial in s (= sin §) 1 X has the same parity as
% , but has an additional factor ¢ if k and & are of opposite parity; in
each case the constant term in the polynomial is unity, by the normalization.

Explicit expressions for the A%(i) are given in Table 1, for values of & and

kK up to 6.

We can now rewrite (8) as
,' .~
Pylsin 8) = kXo agy sX A5ALY cos ku' (1

where the constant, g o, is given by
age = ug PEOY /(2K k1) . (12)

A different constant, Cz , was used in Ref 4, incorporating a factor assoclated
with the eccentricity functions of section 3; {t is given by =2 (z; ’) gy o,
where (ﬂ) 13 the usual binomial coefficient, m here (and throughout the paper)
being used to denote a general integer, with negative values allowed; when
1<0, P§ in {12) must be replaced by P51_1 , 80 that agy = Gag-1,k * but the
relation of agy to the CE of Ref 4 is unchanged. [t is clear, from the last
paragraph, that P%(O) {or PEz_‘(O)) vanishes when k and & (or =% - 1) are

of opposite parity, and it may be shown thet when the parity i{s the same,

% This 'normalization, which nas nothing to do with the standard normalization of
the spherical harmonics and their J-coefficients, leads directly to ARy -1 )
one of the pair of starting values for the recurrence relat!on (21). 5or‘ some
purposes a different normalization 18 preferable such that Ai(i) is defined
for all %20, and A§(1) =1 ; the family of normalized functions can then
be extended in a unified manner when the orbital thecry is Lo cover the
tesseral harmonics {Appendi A). .
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(8-k) @+ 0
2% (12 + K (e - K

PO - (-1 (13)

In substituting {11) into (&Y it is of great benefit to introduce a new quantity,
Alk ,, defined by

A = 3y (R/DF agy 8% A1), “w

where p { = a(l - e2)) is the semi-latus rectum (or parameter) of the orbit;
the equation applies when & < 0, so long as the suffix of A is replaced by
=% = 1. The use of Agy Permits us to wWrite the general term of (5, using

also the notation of (3), as

K ) H .
LR SO LI P (15)

It will be noted that, whereas Az(ii is defined and useful regardless
of parity, Ay {and hence Ui } is only non-zero when k and & are of the
same parity. The zeroes come from ag, , for which the non-zero values, up to
k « % =6, are glven by the like-parity entrles of Table 2. (The Table has been
extended back to A4 « -7, to {llustrate the identity of «, with a_y-1,k when
£ < 0.) However, a use will be found for quantities that behave in the opposite
way from Qgx and Alk , anticipating which we define (with bold letters to make
the distinction)

B, = U (L=t 1) PEL(0) /(2 k! 0) (16)

and

A = 3y R/PE g s€ A0, amn
where Kk has been replaced by «x to signify tnat we now have quantities that
are non-zero only when «x and £ are of opposite parity. Half of Table 2

(for all & ) is devoted to O o since these quantities can be included with

Gy, Ona chequer-board basis.

TR 39022

Ty e S




v

|
W

PR, m«-_m(ﬁ»mmmm%

We will require derivatives of the inclination functions. It is evident
from (10} that

4 ok IR € V1€ T IR D RO 2SI
a7 (AL} VR s A1) (18)
from this and (14) it follows that the {partial) derivative of Agi with respect

to i s given by

Ry = Jy (R/DY oy sk (\kc Moy - Aol ke 1 AE”(L)} L (19)

where f =32 . Tne quantity in (curly) brackets is the D(1) of Ref 4. We
will also require, finally, the particular combinations of Agy and Aik
denoted by Ay, and A7y , and given by

Mj = ksl ag & el Al (20)

the s™' and ¢! factors do not imply singularities, as they must always
cancel via Kk Agy ana Aik respectively.

The A¥(1) and o (and hence the Ay ) may be computed with the ald of
recurrence relations. A fixed k was stipulated in Ref 4 for the formula

(s k) M) - (2 - 1) e AL - ke - k- 1 A, (2

valid for % 2 k + 2 with the starting values Aﬁ(if « 1 and A§,1(1) -c
(21) s even valid for & =k +# 1, {f an arbitrary (but finite) Aﬁ_‘(if is
assumed. However, it is usually more useful to stipulate a fixed & ; the
required formula was giver by Merson'!, being

(= k=18 +k+2)

. K ,
Ay - e Al - T £ a2, (22)

valid for % - 22k 2 0 uith the starters AS(1) =1 and A}"'(0) - ¢

(22) is also valid for k = &£ - 1, with an arbitrary (finite) A%'1(1) . Either
of the two preceding 'pure' three-term recurrence relations, (2i) or (22), can ve
used with just one 'mixed' such relation to generate ail the relations connecting

the Aé(i) ; perhaps the simplest mixed relation (with neitner £ nor k fixed)
is
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(ek)y e akte) = (e-n) Ak, ) s 2kl . (23)

For the o Wwe have the relation, for proceeding along a 'fixed diagonal’
of Table 2 (with £ > 0 and a constant value of £ -k )

L+ k-1

%k T T R %21kt

(24)

whilst to proceed to a lower disgonal we have

ug (k + 1)
Sk = T T o %a-1,ke (25)

These relations suffice to generate all the oy, from ag o =1 . Similar
resations permit the generation of all the LT9% from aq,9 = =t , they can be
dispensed with, howeve ™, sinee it follows frem (12), (13) and (16) that

L =k + 1 - Lt x
S T T % T T %t (2¢)

Though 1t is the Agy {and LY ) that we actually require to carry through
the paper, recurience relations are not cffered for these. To preserve parity {f
one suffix is fixed, it would be necessary to use alternate values of the other;
there seems little point in doing this. though a valid relation could easily be
obtained, for evample by applying (21) three times. There are simple relations
between the Ay, and A, , however. We will need two of these in section 7.3,

namely,
I3 Ay - A
3 [————z'k“ - Shkal ] - 2kes™t ZK (21)
Ugsy Ug-1 Uy
and
A Ag k=1 2h,
[ tkel L Mgkt J .- (28)
Uy Yg-1 Yy

Post3eript. 1n regard to equations (27) - (31), it should have been noted that
Agi/uw, and A7 /u,  actually reduce to -26" A, /u,y and 2c” Ay yaq/ Ve
réspectively, results that are implicit in the analysis of section 6.2, the Uy
factors could be avoided by allowing negative Kk and x (see the footnote of
page 40).

TR 89022

|
i
{




o
et AL

these being true for 1 g kg & (with & and k of the same parity). For
k = 0 we only have cne relation, given by direct addition of (27) and (28) {and
really only one, involving dirsct subtraction, when Kk « & ); thus,

Ay q = -2y . 29y

We could use (27) and (28) to obtain expressions for Aik , defined by
(20), but instead derive them directly. On substituting for Ay, from (14) and
for Aik from (19), then in forming Ajx we find that the term In AE(if
cancels out and we get (for 0 g kgt , and ¢ and k of like parity)

- (" -k 1) .- ! ;
My = 9y (R oy KR P L) ot gkt gl (309 ,

For A7, . on the other hand, the combination of Af(i) and AE’1§1i is such
that (22), with k replaced by k - 1, is {mmedlately applicable, leading to
(but only for 1 g kg 2 now)

Ay = 2% 3 (R/p)Y ayy 07T skt aKTT(y) Bn

for k = 0, this would give a false value of zero, the correct result being the
same as {3 given by (30), since A;'o = -A7,0 - The formulae {30) and (31) are
used in the analysis of &b in section 6.2, (See also the footnote to page 15.)

3 FUNCTIONS OF ECCENTRICITY USED IN THE SUBSEQUENT ANALYSIS

The term U, of the potentlal, specified by {4), has now been decomposed
lato the UYX defined by (15), the latitude (B) having been eliminated. The
longitude was absent froa Ul from the beginning, because of axial symmetry, Jo ’
it rema.ns to eliminate the radius vector (r) . This can be done by appeal to
(6), but {as noted in section 1) we will in practice postpone the use of (6)
until the setting up of each planetary equation, so the present section is
preparatory in nature, Further, it is not (p/r)2*1 , in (15), that must be
eliminated, but {p/r)*~' , as a factor (p/r)2 {3 reta.ned to effect the change
of integration variaole cefined by (7).

It 13 evident from {(6) that an expansion of the form

21
(p/P)2% = T uj 3y4 cos Jv (32)
J=0
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is possible, for L 2 1, and we regard B as defined by this expansion;
5]

clearly, Blj is a polynomial in e . We shall find it useful, and entirely
natural, to extend the definition of BLJ to negatfive § , by defining . .
Byy = By, |g] » 20d to take Byy = Owhen |§] 2 4. On this basis, and using the
notation of (3), we can replace (32) by

1 =1 0
(p/r) I Byy €5 (33)

where the summation effectively runs from j = -« to J = += , 80 that there is
no need for explicit summation limits.

To make use of some results from Ref 4, we first demonstrate that the BiJ
are directly related to the Hansen X functions of classical celestial
mechanies!2, such that

By - a7 xghh (38)

Hansen's functions {of eccentrlcltyi are defined (uniquely) by the existence of
the expansion, for all integral & and § , regardless of sign,

(r7a)t exp(nyv) « I x;J exp(imM) (35)
n

where 12 = -1 and the summation runs from -« to += . Only when m = 0 ,
which is the case with which we are concerned, is X;J a simple (finitely
expressible in elementary functions) function of e (and it i{s precisely because
of this that we change the variable from ¢ to v {n the planetary equations,
thus avoiding infinite expansions in M ).

To demonstrate (34), we first replace the index £ by ={2 + 1) in (35), -
and then integrate over a revolution of M . We get (from the real part of the

result)
27
f (p/e)¥*Y cos gv au - 2x 2(RT) xgtotd | (36)
5 |
f
TR 89022




e ¢t A ittt s i

But from (33),

2% 2%

I (p/ey**! cos Jv aM = I 1 Byy (p/r)2 cos mv cos Jv aM . a7y
n

0 0

We apply (7) to change the integration variable to v on the right-hand side of
(37); only if m = +} do we retain a non-zero term, and in fact

2n
J (pre)**! cos gv am = 2x q3 By, - (38
0

Then (34) is immediate from {36) and (38).

Some comments related to the notation are worth maki ig before we proceed
further. 1In principle we are reserving the suffix k for the A functions and
3 for the B functions, but {1 section 5, where only the value -k arises for
J ,, we will naturally encountes Blk . We would also rather naturally change the
notation from J§ to k 1in {35) if we were following the traditionai path7 in
which the tntegration variable is M and the axpansion of (15) is by {35)
directly. After replacement of % by ~(% + 1i , the Hansen function would then
appear as X;"'"-k , which is nowadays (following Kaula7) usually expressed (when
L20) as Glpq'(e) i here p = #(% - k) , which must be integral (assuming ¢
and k to be of the same parity), and q = m = k . JIntroducing also the
notation G‘{q , which the present author? has recommended as preferabdle to

Glpq , we may extend (34) by writing

L T AT N TYNT WU B~ RO B €

Gooding and Klng-Hele‘3 nave recently reported o~ the G functions that are
relevant to resonant satellite orbits, Ref 13 includes the listirg of a Fortran
program (by Alfred Odell) that computes the functions for arbitrary values of
%, k and Kaula's q , by quadrature.

We can now use the identity (34) to tie into the analysis of Ref 4. Thus,
Wwe may express the e-polynomial B“ , when L 21 and 053 <, interms of
a normalirzed such polynomial, the connecting relation heing

By = (V31 cer2d e, (40)
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B{(e) in (40) is a polynomial in 22 , with constant term unity by the
normalization. Explicit expressions for the B{(e) are given in Table 3, for
values of & and J wup to 7 and 6 respectively. There Is an evident
resemblance between the Bi(e) and the A%(i) , a significant difference being
that the new functions run from % = 1 and not & = ¢ ; the resemblance 1s not
fortuitous, since it can be shown that?

Bj(e) = J—é,‘(—f;—%ﬂl(\e/z)ﬁ L S FC b (n)

from which it follows that
Bile) = q¥I1 Al (tanlie) . )

In contradlstinction with the Azk , however, it is usually much better to
vork with the Blj directly {in recurrence relations, for example), rather than
through B{(e5 and (40). One reason for this is that only alternate values of
the Ay are non-zero, whereas (for |3 <& and e » 0) all the By, are non-
zero. Further, no difficulty arises with the BLJ when J < 0 (as already
noved, and see alsoc Appendir B), whereas Bi(e$ would then be infinite {if
{3] < 2). We can even allcw & to be negative (or zero) as well as § . The
validity of this follows from the universality of (34) - the universality {s
brought out by Table 4, which lists 813 for % running from -3 to +4 and
from =1 to +3.

The entries in Table 4 form triangular blocks of four types. First, for
2 >0 and IJI < % , we have the quantities that can be expressed by (40) when
32 0. Secondly, for &> 0 and [j| 2 %, we have (two blocks of) zeroes.
Thirdly, for 2§ 0 and |J] $ -2, we have quantities that, when 3 2 0, can be
expressed by a formula complementary to (40), viz

By - (23 1) ter2d @@ Blg(e) (43)

a formula equivalent to this was given in Ref 4, the aprlication being {as noted
in section 1) to secular aad long-period perturbations associated with exterior
(rather than interior) mass. Finally, for % 50 and 131 > &, we have (two
blocks of) quantities that are most conveniently expressed in terms of B8 (not
now denoting latitude, as previously) and g , rather than e and ¢q , where
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no attention wis paid to these quantities (or their equivalents) in Ref 4, there
being no appl.cation for them, but the formula for Bg, is derived here, for
conpleteness, in Appendix B. (Other entries in this last pair of blocks are then
derivable frea recurrence relations.) Before leaving Table 4, we note that the
formula for the X or G function enrresponding to 513 13 immediate from the
Table, {7 view of (34); tnus it {s only necessary to apply the factor q'-2% ,
which introduces 3 negative power of  when there is not one already presant
and cancets it out when there is!

In regard to derivatives of the eccentricity functions, it can be shown (by
working from (41)), and easily verified from Table 3 that, for 1 $j ¢4

d [ - -1 AP | i P

ejer} = 25e7t (8)71(e) - Bl(0)] . (5)
The universal formula for the derivative of BZJ is

[ - - - -1 Y

B}y (=1 Byy goq - J el By . (u6)
For 153 <1, this follows from (45); for general entries in Table 3, {t can
be verified with the aid of g' and B3' , which may be expressed as =-e/q and
B/eq respectively. However, because we only introduce the Blj after each

planetary equation has been set up, we effectively only use (46) in expressing
the rates of change of tne mean elements. Since this involves

—:;-(q Age Byy) = @71 g ta? By ¢ (28 - 1) e By, n

we define

Eg = G2 By + (22 -1) e By s (48)
then (46), re-expressed via the : ecurrence relation (56), leads to

Ege = €7 (22 - k) By ¢ (L - k) By oy . (49)
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(By symmetry, there is a parallel expression-for Eqx that involves By, and
Bl,kﬂ .) Table 5 gives explicit expressions for the Ei.k ,, with & running
from; =3 to +% as in Table U; only the entries in which k has the same parity
as & {or =2°- 1 1f £ < 0 ) are useful in practice, and entries for k 2 & (or
~% +1 if % S0) are omitted entirely (for k 2 £ > 0 they would all be zero).
The Eg are related to the E'{(e)‘, of Ref 4 by

By = el (esk (22 0) Ete) , (50)

when >0 ; for % 50, the extra factor q2%*1 i3 required (cf (Y43), where
the additional factor, in relation to (40), 1s g¢2%=1 ),

The Byy may be computed from recurrence relations for the Bi(e) , Which
will now be given, but in developing the theory it is more useful to have such
relations for the B,'J themselves, so these will also be given. For fixed J
{ 2 0), the recurrence formuia (from Ref 4) is

(4 +3 -1 Bjte) = (20 ~3) By - {8 -J -2 q2 B pe), (51)

valid for % 2 J + 3 with the starters Bi,,(e)' and Bj,z(e) both unity. For
fixed 2 ( 2 3), on the other hand, the formula is!!

Bte) = 8oy o Lpd s Bl 1) o2 520y, (52)

valld for 2 - 32§ 20 with the starters B} '(e) and B} 2(e) agatn both
unity. The resemblance of (51) and (52) to (21) and (22) respectively follows
from the remark leading up to (42).

The recurrence relations for the BQJ , that correspond to (51) and (52),
respectively, and are valid for all % and j , are (when symmetrically
expreased)

WE - QB g - a2k - 1) By v (02 - 2 By g = O (53)

and

(-1 eBy gy +2Byy+(JrDeB gy » 0 (54)
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the mandatory symmetry in (5H), to satisfy the unchanging value of Blj under
the operation j * - , is evident.

As remarked for the inclination functlons, elther of the 'pure! relations,
(53) and (54), can be used with a 'mixed' relation* to generate ail tbe
recurrence relations connecting the BLJ . Here the mixed relations are, in
particular, those that connect three out of four of the BEJ lying *around a
square' of index duplets; if the square consists of the duplets (2, J),
4 ~1,3), (& §+1)and (L +1, § +1), then the four mixed relations
connecting them (a1l of which we shall require in the sequel) are

2By = (L =3) Byyy 4 *teBy gy = 0, (55),
202 Byy = (8- 4) By g+ (A + 3+ e By guy = 0, (56)
%0 Byy + & By gup = (L4 3+ 1) Byyy oy =0 {57
and
(=9 @By, g+ 2028y yuq = (4 + 3+ 1) By gpq = 0. (58)

If we re-order the terms in the last two relations and replace § by J -1, we
get relations which are symmetric pairings of (55) and (56), viz

2By - (+ By gt leByyy =0 59
andg

202 8 = (4 ¢ SV By g+ (A -3+ 1) eByyy gq = O 60)

Of this set of relations, (55) ard (59) can be obtalned at once from (54) and the
relation equivalent to one given {for the Hansen tuncbions} by Zatlropoulosat viz

te (By gy = By guy) = 2 Beuy g (61)

this {s of a different 'shape' from our triangles-around-the-square relations,
but is perhaps the simplest recurrence relation of all.

* Note added in proof: Ref 19 indicaves that, for inclination functions, pure
relations are computationally preferable to mixed relations (see also Ref 20).
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4 AATES OF CHANGE OF OSCULATING ELEMENTS

In tnis section we use Lagrange's planetary equations to deveiop the rate
of change of each of the orbital elements (a, e, i, @, w and M) due to Ut , the
term of the disturbing function specified by (15). Each rate of change is to be
with respect to v , rather than t , expressed as a finite trigonometric series
(assuming % > 0 , as we now always do, except in section 8.1), with v as the
va~iable. The v-independent terms of each dg/dv are then isolated; they
effectively contribute to the time rate of change, t ., of the mean element,

T ,, expressions for the ? being held over to section 5. The remaining terms of
dg/dv  can at once be integrated to provide contributions to the short-period
perturbation, &z . The result of the integration is, in fact, so 'immediate'
(apart from the cuestion of the integration 'constants' already referred to in
section 1) that we will not bother to write down formal expressions for the five
§y other than 6a ; this is to emphasize the fact that it {s the combinations
of the 6 into ér, &b and éw that are of interest (being the topic of section
6}, not the &g themselves.

The perturbation &§a {s a special case because it can be obtained withsut
integration. As in Part 1, however, we also derive da/dv from the appropriate
planetary equation, as a prototype for the derivation of the other dg/dv . By
bringing {n the quasi-elements, % and p , it is possible to develop each
equation in terms of the partial derivative of U§ with respect to a singls
quantity.

4,1 Semi-major axis

As {n Part 1, there is an absoiute constant of the motion, which we denote
by a' , such that

a = a' (1 +2au/y) ; (62)

this {8 an exact relationship for any time-independent disturbing function, U ,
and {n particular for the axi-symmetric UE . It follows that there 1s no long-
term variation in a , to whatever order of magnitude the perturbation analysis
is conducted. Further, the short-period perturbation, &a , i{s given exactly, on

substituting for Ut from (15), thus

sa = = 2a'q72 Ay (/)% . (63)
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This does not mean that an exact perturbation can be written down for semi-major
axis, however, as the right-hand side of (63) is expressed in terms of osculating
elements; 23 3oon as mean elements are introduced, the result is no more than a
first-order perturbation expression, as with any other ¢ .

To present &a in the form appropriate tor use in section 6.1, we combine
C‘é with one of the factors p/r . Thus,

sa = -2aq72 Ay (preyt (sc'_‘1 + Zc'é + ec',‘) . (64)

We retain another p/r factor explicitly, and expand the remaining (p/r)}¢~1 by
(33). By this means the term 2Cg , for example, in (64) is effectively
transformed, for each J , into CJ + (:_J . But each pair of terms (such as
this) for positive J , in the infinite summation of (33), is matched by the same
pair (in reverse order) for negative J , so we can express the result of the
expansion as

sa = -aq? Age (p/re) 1 Byy j(ecJ_, + 2y + eCyyy) - {657

We now develop an exprcssion for da/dv ab infitio, using the general
procedure that involves the planctary equation for 4 . This equation is

& . = (66)

and on substituting for Ul,f we get

da - 3 e
5 - - enag 2 Ag -a—M-{(phr-)"'1 col - (67

The M-differentiation is immediate, since p/r 1is given by (6) and 3v/iM s
Q=3 (p/r)2 (ef (7)). We transform from dt to dv (again using (7)), and all
this leads to

:‘}3 o 82 A (p/mE [(k- 2 =D eSy v Sy e ket es). (68)

i o

g

S i e b ————————_ s <
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e
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Finally, we split (p/r)* into (p/r)*~1 and p/r ; then, applying (33) and
taking advantage of the matching of terms for positive and negative J , we get

%% “ daaZay T8y {k-2-1De2sy,e2(k-0-1e Sgu1

C k(2 +e?) Sy v A+ L 1) ey v ke R eV e sl (69

This may be regarded as a protctype for all the dr/dv ; {n addition,
(69) is used in the derivation of de/dv in section 4.2, The equivalence of
this result with the v-derivative of &a obtained by the special procedure may
be verified, most easily by the v-differentiation of (64).

In dealing with the subsequent ¢ , we will be isolating the component of
dg/dv  that leads to secular and long-period perturbations. We know that for
da/dv this component must be zero, both from the special procedure and from the
form of (66) (since a term of U that is free of short-period variation must
tautologously have zero M-derivative), but it is instructive (as part of the
prototype for the other [ ) to obtain this result from (69). The terms
independent of v in the overall j-sum are the terms {n S.y K - SEK) « Since
Bl,-J » B,‘J . the combination of all such terms involves the factor

(k= 0= 1) e2 By ov2(=1=-1)eBy .+ 2K(2+ed) By

A LT @By g v (kv L 1) €28y oo

and it follows from three applications of (54) that this is zero.
4,2  Eccentricity

We develope the perturbation in e by first obtalning the perturbation in
p ., since

5 = 24 - 2aeé (70)

and the planetary equation for p i3 just

%, aw '
dt na dw m
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On substituting for Uf we get
B o= - maget ay )t L(co) (72)
Transformation of the integration variable to v , by (7), ylelds

%?,- = 2kp Agy /ey 5o s 3

hence we gat, from (33) and the usual argument concerning positive and negative
I

B o 2kp Agy DBy Sy - ()

We get the long-term variation by setting § = =k ; thus
£
P = 2knp Ay By, S . (75)

The expression for ¥ is now immediate from (70}, since % < 0, but it is not
given here, as the complete list of the 'i' 13 given in section 5.

For the v-derivative of the short-period perturbation, e , we have all
the terms with J + k « 0 {n the expression glven by the combination of {6Y) and
(73),, according to (70). Tnis combination leads to

L Ay DBy (k- k- Ve sy, v AX - L DSy

¢ Bke Sy ¢ 202 ¢ v 18y, Lk v 2 v Ne Sy,) . (76)

As already indicated, we will not write down the expression for &e ,
fnvolving CJ-Z ate, given immediately by integration of (76); immediate, that
is, apart from the 'constant term', in C.y , tnat we are not yet in a position
to assign. This term effectively replaces the infinite term (in C.y Y that
would artse {f we had not removed the S.; term from (76) {n advance.
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4,3 Inclination

We can develop the perturbation in { from the perturbations in p and
pe?, since

diped)/dt = o2p - 2pesi (17

and the planetary equation for pe? is just

d(pe?) 2qc 3U
3 - -ﬁ‘—a—n . (78)

But U‘,f is independent of longitude, and hence of @ , so p02 {s an {nvariant.
Using (77), therefore, we have T at once from {75), whilst &1 will be based
on the expression for di/dv derived from (74), viz

Lo kest gy Doy sy §2)

(Stnce A, contalins s¥ as a factor, there will never be a non-zero multiple
of an uncancelled s~! .)

4.4  Right ascension of the node

The perturbation in £ .omes from the planetary equation

da — (80y

at nadqs 8t
On substituting for U‘,f we get
2~ - nq3 s (e ag Co s 81)

We 1uw apply (7) and (33) as usual, getting an isolated contribution to
#i , together with the expression for d@/dv , viz

g .
B e g Iy (82)
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4.5 Argument of perigee

Introduction of % gives us a one-term planetary equation, since

Sy, (8
dat nae e 183)

The e-derivative is much the most complicated of the partial derivatives of
U‘," , since e 13 an argument of each of the four factors on the right-hand side
of (15). Thus we get

Vo= -ne! q?ae'{Azk a2 (p/e)t*t Co},- (8w
But

(a2 ag) = 20+ 1) eqH ag, (85)

and, using the expressions for 3r/3e and &v/de (equations (1) and (42) of
Part 1),

.
%{(p/r),"“ Co} « @2 (prm)¥* {4+ 1)(cos v - e - e sin2v) Cg

-kstnv (2 +ecosv) S}, (86)
so that (84) reduces to

¥ o= nelgq73 g, (p/e}*™Y {k stn v (2 + @ cos ) Sp -

(4 +1) cos v (1 +ecos v) Co} . (87)

We make the standard expansions of the trigonometric products in (87), and
then apply (7) and (33) as usual. This leads to

Do bt ag DBy f(h et - KeCyp e 2% 0T - Gy

$2L e Ve Cy e 20k ¢t ¢ 2Cyy + (841 + ke 03.2} . (88)
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To get ¥ », We piek out the coefficient of C.i . Thus

Vo= -dnet g HL e - ke By p v 2R 41 - 2By ys
+205 4 DBy +2AR 21+ KBy Ly (4T +RIe By ool G . (89)
But this ¢an be simplified by three applications of (54), which lead to

¥ o= oen 2ag {0262 - 0By ¢ (1= e By g} Co (90)

We can now introduce the quantity Elk , to get a concise expression, since by
(49) we have

| Boe - ne! Ag By Coc - (91

To get © and the appropriate terms of dw/dv , we combine (91) and (the
residual terms of) (88) with & and (82), respectively, using

W = b-ch. (92)
4.6 Mean anomaly

We start by studying p , since our final cne-term planetary equation is

i) 2 (93)

i Remembering that Ag, , in UE 5, {s itself a function of semi-major axis, we

E obtain

J .
é pom - 202 e ngt? (et g ¢ D)

i

g and hence

|

i S . -a(n e Moy DBy cy (95)

!

| In particular, '

! B o= - 200 ¢ 1nq Agy By Cag o (96)
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and from (91) we therefore also have

¥ ow - ngag {200 e DBy - et gl oy,

since

(97)

(98)

From (88), similarly, the v-derivative of &¢ 1is given by the v-dependent terms

of

- belang Ioy {0t~ Recy, e 2t e 1 - 2y,

St v ey v 20k ¢ 1 v 2Ky ¢ (L1 ¢ ke Cyupl (99)

But

where (with t standing for time)

and (assuming only U, to be operating)
n-at o= 3002 Ay (p/m¥ g
by (63) and Kepler's trird law,
From (101) and (102) 1t follows that

T
o T Ak Inycy,

by the usual procedure. We may then write

Toeonreanq gy By O

(100)

(o)

(102)

(103)

(10%)
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from which M is available on combining with (97). Finally, on combining the
residual terms (those with k + J » 0 J of (103) with (99), we find that the
v-derivative of &M is given by the v-dependent terms of

Eo betang Iagy (4o -Kecy, s 20n et - 20cy,

-6(L-1)eCy +2(R+1 +2k)C,, +{L+1 +KeCy,l. (105
3 34 342

To conclude, we note that a very much simpler result than (105) is
available for the non-singular 4L . Thus from (88) and (105) we get

a
& - - @ - Naag Ieycy . (106)

5 SECULAR AND LONG-PERIOD ELEMENT RATES

In this section we collect the expressions for the rates of change of the
mean elements, {.e. the % assoclated with Uy . As we have seen in section X
this simply amounts to listing the components of the df/dv that are multiples
of either S&k or ka . When k = 0, the rate of change {s secular; for
k>0, it Is long-period. We shall not be concerned with the build-up of actua,
perturbations from the ? ,, since this is fully dealt with in Parts 1 and 3;
suffice it to say that there is no difficulty in the secular perturbations, but
that (even in a first-order analysis) difficulties arise with the long-period
perturbationa, in particular due to the singularities associated with zero e and

zero s .

Another point must be men%ioned before we list the t. Asthe expressions
arise from terms in dg/dv , but were treated (in section &) as if from terms in
dg/aM |, each f produces a ‘“ort-period component of the perturbation in ¢
i.e. a contribution to 67 is induced. These contributions may be amalgamated
into components of &r , b and $w , as done for J3 fn Part 1 {section 7).
The issue relates to the definition of semi-mean elements (section 3.2 {bid),
which is cutside the scope of Part 2; it should be cl2aar, from equations (120) -
{122) 1n section 6, nowever, that no difficulty arises in the amalgamatiag.
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; In the list of the T that follows, we note that the maximum value of k

1s % -2, since le = Epy = 0 . We attach an explicit subscript (2k) to each
? ; then our first result is

&y = 0. (1om)
For e , it follows from (70) and (75) that
¥y = - kne"'q? ag By SK . (108)

There will always be a positive power of e to cancel the factor e~ , it will
be noted, coming from k Blk .

For 1 , similarly, it follows from (75) and (77) that

Ty = knes! Ay By K . (109)

Here there will always be a positive power of s , coming from kA, , to cancel
the factor s~ .

For f , our analysis of (81) gives
s By = - nAj By C . (110)

The formula is expressed in this way, with a factor s on the left-hand side, to
avoid the possibility of an uncancellable s=1 on the right-hand side. For
long-period rirturbations, there {s a singularity difficulty here, which can be
dealt with 3s {ndicated in Part 1 (section 3.5). For secular perturbations (and
here s our first ron-zero ¢ when Kk = O ) there is no problem, since in the
expression for Aik , glven by (19), A{(l) appears with the multiplying factor

, k, and AS*'(1) with the fautor f .

For w , We use the final result, (91), for ¥ . Then from {92) and
(110) tt follows that
es ﬁlk = n{ec A}

ik B T8 Agy Ego ¥ ()
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Again the formula is expressed like this to make the right-hand side non-
singular; and again (because Egx contains a factor e when k = 0, as seen
trom Table 5) there is no difficulty with secular perturbations.

For M , we combine the results for § and j'- n' , given by (97) and
(104) respectiveiy; thus

e My = na Ay {Ey - (20 - De By} ek . (12
From (48), this may also be written as
e My = nad Ay By cK . (113

From the definition of L , we may also combine K112) with (91); this gives the
non-singular result

+ . K
Lye = = (2L - 1) nq Agi Byy Cly - (114)

As usual, a factor e ocan be cancelled froa both sides of (113) when
k = 0 ., However, there {s a simpler way of dealing with secular perturbations in
M , as indicated in Part 1; Ref 3 was largely devoted to this topic, and the
rest of this section conforms with the account therein.

The basic {dea is that we represent the secular perturbations in mean
anomaly by modifying the value of the mean mean motion. In view of {(113), In
fact, we write

LN UEIRAE N VI I (115)

where the susmation is now on & , and we have set ('8 to unity. This agrees
with equation (11} of Ref 3, since A,‘,O here may be identified with

~dgCe(R/D)EA (1) from that paper.

The logic for using a' a3 mean semi-major axis (%) ts, as we have seen,
compelling, 3o if M « n' , we do not retain ¥epler's third law in its simplest
torm. This i{s of no consequence, however, and we slaply write, fron (115),

m2d . u s 267193 5y o8] o) (116
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Ref 3 gives, as equation (15), an explicit version of (116) with (even) !
values of & up to 8; the two versions can easily be verified as equivalent if
we note that Q, (in Ref 3) is just a normalized form of Bi,o such that

Bi,o = & - D= 2)eq . mn,
The following recurrence relation was given in Ref 3:

(L= 1Qy = (20 -5)Qpy - (& - 4) a2 Qpp s (118)

this is valid for 22 4, with Q= 0 and Q3 =1 . The relation may be
obtained from (117) and (46), together with

(-1 =308y y = (4-2)(20-5) By,
-8 -2 - 31 e By {9

which derives from (53) on replacing (2, §) by (& -2, 1).

It is very convenient that Qp = 0 . It means that for first-order
analysis associated with Jp (the dominant harmonic of the geopotentialf n is
the same as n' .

6 PERTURBATIONS (SHORT-PERIOD) IN COORDINATES - GENERAL CASE

In this section we develop general expressions for the 4r , &b and &w
that can be derived from the first-order 67 via the formulae (taken from
section 3.3 of Part 1)

sr = (r/a) 8a - (a cos v} Ge + (aeq! sin v} &M , (120)

&b « (cos u') &1 + (s sinu') &R (2N
and

tw = &9+ ("2 sinv (1 + p/r)} So + q"3(p/r)2 e . (122)

Special cases (derived from the choice of integration constants {n the 63 ) are
reserved to section 7, but in counting the number of terms associated with the
general U, we have regard to the basis on which these constants are chosen.
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The 4&; are available at once as the v-integrals of the expressions for
dg/dv  in section 4. Ceneration of the expressions for &r and &w {8
essentially straightforward in that the analysis starts with the §; due to U:
(which &7 we can denote by (1 j and finishes with drox and Gka . With
&b , however, there ls a complication, due to the appearance of u' in (121), as
opposed to v in (120) and (122); as already noted in section !, we deal with
the difficulty by deriving 6b£K , rather than 5b1k ,, where « has values of
opposite parity to those of k .

We do not give expressions for & , 8 and & ), but (as is clear from
Part 1) these are immediately available from tne expressions for ér , & and
éw , Just by replacing Sy and Cy by (respectively) (k + j} @i nCy and
-(k + J) W Sy . We can do better than this if we allow for the (overall) rate of
change of T , replacing (k + )@ by (k + )R + k& , assuming Cy and Sy
still to be shorthand for C§ and S§ .

6.1 The perturbation 4&r

We have to apply (120) with sa , ée and &M given by (65) and (the
integrals of) {76) and (105). We find that the integrals combine in a very
natural way, as a result of which we can write (Wwith & short for éry, )

& - (r/a) 2 = +aALkiaw{e[::§:;os“;f3‘]cw
f2x - 8. -1 . 2kt +1 K+ 4=t kww] }
BT B oy e A e - 2

The simplest way to incorporate (65) is to note that this can be decomposed
into

§6a--{-ak2k25“{e = »3———4-]

. Koyt L] ‘. 2] }
2[2 PRI T j‘VJ 9[3'—-—3L k——:J’—?ECJﬂ S F1))

Cyq

By this trick, we can combine (123) and {124) at once, to get, say,

b - baag D8y R, a2s)
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where RJ (or RikJ to display all the index parameters) is given by

3
Ry = e(y + 4 - 1)(m_—2 = J}CJ‘T

cofRe ot 2 -0e)
lk‘3'1 k+J+14

sely- b 1)[%¢ E—;—“1-7-5]c_1,, . (126)

It can be seen that (125) s a summation in which Ry , as glven by (126},
has three P ts; each t 1s expressed as the sum of two multiples of
the same 'C quantity'. Let us separate the first multiple from the second {in

each component of RJ ), feeding them back separately into the summation of
(125), so that we have two distinct summations that we can denote by I. and
L+ . Thus I. finvolves ¢ B“ RJ_ » where

L -

2§ + + 1
K+ -1

(3‘1‘3J J

Pt tec,y v 2 eCypy - (12D)

! -
RJ- - T

Now we have seen (in section 3) that all sums over B’-J can be regarded as
running from -= to +e , It follows that we can rearrange the three sets of

terns in ):B“ RJ_ such that (with J now used t{n a different way)

Doy Rye = Tlke g 17M(3+ 1o By g, + 2025 ¢ ¢ - DBy,
+ 303 - e By g ley . (128)

We now invoke the recurrence relation (54) to eliminate B,"J.‘ , 80 that
the quantity in curly brackets in (128) becomes

203 v 2 - Bgy s 205 - Ve By gy,
and then simplify further, using (58) with both £ and § reduced by t, to
reduce this to 2(% = 1)q2 B-q,4 (We get the same result oy using (54) to

eliminate BE.J-I first, and then simplifying further via (56).) Thus

DBy, = 20 -0a2 (kv g- 01y, (129

TR 89022

PRV




37

Similarly,

IByyy, = =20 - DTk 3+ By gy (130)

The final result we require now follows from (125), (129) and (130).
Because of its importance, we write Cj in full. Thus

T R LR R Erﬁj.—\ﬁmﬁﬂz-m cos (kut « Jv) .+ (331)

Equation (131} provides a general formula for &r due to Ut ,, valid for
221, (This restriction on & has been operative from the beginning of
section 4,) In view of the fact that k only takes non-negative values of the
same parity as 2 , it should be noted that Jj takes all values, dut with
By.q,y only non-zero If |J| §4 -2 . (Tnis applies 1f L 22 ; but the case

2 = 1 s trivial because there 1s an overall factor % -1 .)

It J=-kz1, there {s a zero denominator in (l315n and terms with
these values of J must be excluded from the formula; they are associated with
the terms in 4g/dv that were hived off in the generation of the ¥, In
section 7 we shall determine constants for &e,, and &My, such that the terms
with these two values of J are forced to zero. It will be noted that all the
cosine terms occurring In (131}, for a given Jy and all possible Kk , are
diatinct, except that {f K = 0 (2 even) then equal and opposite values of J
lead to identical teras in cos Jjv .

We use the remarks in the last paragraph to provide a pair of formulae for
Nop » the total number of terms required to express &r for a given value of
4 . One formula applies when £ {8 odd, the other when % is even. In both
cases the number of § values for each Kk (regardless of the excluded values, if
any) is 28 -3 ,4if 222

If % 1s odd, there are +(f + 1) possible values of k , so a prior{ the
value of Ny, i3 ¥(2 + 1)(2t -3) , if 42 3. But this must be reduced by
the number of excluded values of the dupiet (k, j) . If X = & , § cannot be
-k + 1, so there {s no value to exclude. If k=2 -2 , § cau (a priori) be
-k + 1 and this value must be excluded. If k S & - 4, it will always be
necessary to exclude poth -k ¢+t and =k - 1, Thus the total number of
exclusions {s 2 - 2 . Subtracting this from the a-priori value, we get
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Ny = 22-432-1) . (132)

Values for & up to 15 (including “1.r = 0 , which {s the correct value, even
though the above analysis only applies for £ 3 3 ) are given in Table 6.

If & is even, there are }1 + 1 possible values of k , s0 a priori the
value of Ny, is (2 + 2)(28 - 3), The exclusions are as recorded before,
amounting to 2 -t now if £ 2 4, but it is also natural* for Nop not to
count the 'duplications' that arise when k = 0 ; there are % - 3 of these
duplications if 23 4, viz for 2 g |J] g % - 2 (we cannot 'discount’ for
|J| =« 1 , since both values have already been 'excluded'). Thus the total number
of exclusions s effectively increased to 2¢ - 4 , aud this is the right number
even when £ = 2 {not covered by the argument that applies for £ 2 4 only).
Subtracting this value from the a-prior! value, we get

Nep = 22 - H(3 - 2) . (133)

Table 6 gives values for 2% wup to 16, It is remarkable that, as a result of the
discounting of the duplications, we have a formula that is so close to what the
fmproper use of (132) would give, the value by (1335 being larger by Jjust %.
Further, if we did not discount, the formula for £ > 4, viz 2 - e v W),
would give 1, {nstead of the correct 2, when 1 = 2,

1t is noted, {n conclusion, that, due to the multiplier (r/a) of da in
(120}, it would not be a simple matter to null the 'constant' terms of &r with
a choice of T » a' , but that {n any case we would prefer not to make such a
choice. Further, the constants in éa and §r are not the same, partly due to
the multiplier of &a referred to, but mainly to the way in which the terms {n
e and &M combine, For even ¢ , we will have, in particular, a coefficient
of 08 {= 1) equal to (4 - 1IPAy oBoer,o + (See {159) for the constant {n ¢&a.)

6.2 The perturbation &b
We get &b from (121), where 61 and 6Q are given by the
{ntegrals of (79) and (82). This {3 on the assumption that &b (= 8y s

associated with Uf , following the decomposition of U, by (5), We shall
shortly find, however, that it is much more convenient to decompose the total

* In software in particular, we would rather double a computed quantity than have
to compute it again; {in the general analytical formula, (131), however, there
is no easy way to indicate a special situation when k = 0 and j=» 0 .
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§b (associated with Ul ) as Z Gblr , where the summation is for values of «
that are of opposite parity to 1t and we no longer associate the individual &b
(= 8by ) with specific components of U .

In relation to U§ , we get

kes™! K
by = -1 By { E_T-E'Alk Cf cos u' +

1
k+3

Ay S5 sin u'} . 13u)

The trigonometrical products can be replaced by sums, in the usual way, and we
can then invoke the notation of (20) to write

Sby = - de DBy (k¢ 7MY Ok v g ot (135)

This expression may be contrasted with (125) and (126) for &r . In view of the

difference in superfix, as well as suffix (which alone varied in the terms of

Ry ), in the two C terms of (135), we would now like to combine a pair of terms

with different k indices, before the summation over the J index operates. We

note that Aik and Ajg » though under the summation sign in (135), are actually
independent of § .

With the philosophy just referred to, we make the new decomposition
by = L &by {136)
where each &b (= &by, ) 18 of the form
s o~ Iy Byy cj (131

and we require an expression for TJ (or leJ to display all the index
parameters). We note first that since (for non-trivial results) k runs from 0
or 1 to & (taking alternate valuesfh it follows that, in principle, x runs
from -t or 0 to & + 1t (again alternate values, but of opposite parity to k):
for the minimum value of «x , only the term in Aik » in (135), contributes to

Ty » whilst for the maximum value of « , only the term in A7, contributes; for
intermediate values (if any), both terms contribute. But we c¢an straight away
dismiss the 'maximum value' (x = & + 1), because Apg is Just a multiple of

si i from this it follows that Agy o defined by KZO)D is zero. (Also By = 0
anyway!) We shall find that we do not require the 'minimum value' {x = -1)

either.
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To evaluate Ty , In general, we use (30) and (313 for Afy aud Agy
respectively. It Is fortuanate that we require the first with k = ¢« - 1 and the
second with K = « + 1 , since this means that we pick up the same inciination
function, Af(i) ,, for both; moreover, it is aesthetically satisfying to have a
direct application for the inciination functions for which subscript and
superscript are of opposite parity, as opposed to merely an application in the
propagation of like-parity functions*. We have

+ 1 (B -+ DR +x)
Tyt Ty {g IR - e e °‘z.<-1}(ﬂ/P)l $CAR) . (138

The quantity in curly brackets in (138) is . pure constant, in which the
ag, are given by {12): thus the first o involves PE"KO) and the second
involves PE"(O) », these being given by (13). By relating these to P§, (0) ,
we mdy express the aforesaid quantity (after some algebraic reduction) as

BUETXES))
2+l oy

[ Ugay Uye-1
PEH(O) [xij#l'xvj-‘l *

But P7,,(0) s related to ay by (16), and thus to Ay by (17). Hence
(138) gives

L Age { Ug+ Ue=1 }
Nt me Wy T EEs e (3%

The preceding {s 'general' in that it applies for 1 Sk s -1 (orb more
precisely, with 2 as lower bound when £ 1is odd); further, If «x 2 2 we can
obviouslv cancel the three appearances of u . We still have to cover the cases
k=0 (% odd) and « = -t (% even), in which (in principle) only the first term
in curly brackets is to be taken. To count only non-zero terms when TJ is
substituted in (137), the restriction on § {is that |J} S & -1 (ecf an upper
bound of % ~ 2 in the analysis for r ); we shall be excluding the values
J=x 21, of course,

¥ This strengthens the view (noted in other papers, and in section 8 of Ref 13
in particular) that ¥ (of either parity) is a much better index parameter than
faula's p (where 2p = & - k , referred to in section 3 here). When the
analysis includes the tesseral harmonics (Ref 9, and see Appendix A here), X
takes negative values (with |k| § % ) as well as positive, but the factor uy
1n {12) is not required.
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When « = 0, we require just 2/(J + 1) from the curly brackets in (139)
but for each J > 0, half this quantity may be combined with half the corres~
ponding quantity for 3 < 0, to give 1/(j + 1) + 1/(-3 + 1) , which can be
rewritten as 1/(§ + 1) ~ 1/(§ = 1). It follows that (139), with the three
occurrences of u deleted, again gives the right results {counted separately for
J >0 and J < 0). The modified formula may be seen to apply, finally, for
j=0.

When «x = -1, the position is more complicated. First, the expression by
(139) is not even legitimate now, since Ay, 13 not defined for x < 0 ; the
{llegitimacy arose {n the substitution for “Ek » 8ince (31) does not apply when
k=0 . But (20) indicates that Ai'o - -Ai.o , and this suggests that we can
relate the required term, involving u .4 With « = -1, to the term in u .,
when « = 1 . Since c5‘ - CIJ ,, the relating will involve the transposition of
positive and negative values of J , and this {s also necessary to identify
u‘,,/(xﬁj*li for x = -1 with u _;/(k+J-1) for « = 1 . In short, we can
deal with « = -1 just by doubling the second term in curly brackets in {139}
that {s assoclated with « = 1 . This means that, yet agaln¥®, we get the »ight
result from (139) if e cancel the three appearances of u .

We can now write down the final result we require, on substituting (139)
into (137) and expressing CE in full, Thus

g = -~ 1 A"‘JXTFTJ_‘TT‘(?‘—J_:—‘YB,‘J cos (ku' + v . {140)

As already indicated, this formula i{s unlike K131$¢ the corresponding one
for &r , in that it cannot be taken in isolation as relating to a sub-component
of Uy . It s like (131) in one respect, howaever, in that terms of 80y, with
J = =x £t are excluded, In section 7 we shall determine constants for &i,,
and 8y (k , not «x , now being the appropriate symbol) such that these terms
are forced to zero,

% The universality of this procedure (cancelling the u ) stems from the
original introduction of u . into the definition of &g, . If we dispensed
with this factor, but used positive va.ues of « as well as negative ones
(see also Appendix A), then we would find nothing special about the values
+1 and 0 in the first place.
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We proceed to obtain a palr of formulae for Ny, , the total number of
terms (without duplication of CJ 2 required to express &b for a given value of
% « Whether £ is odd or even, the number of J values for each « (not dis-
counting excluded values) {s 24 - 1, correct for all £ (2 1) this time.

If % is even {which we have seen to be the simpler case), there are &I
possible values of «x , so a priori the value of Ny, is (24 < 1) . When
kef=1, § canbe -k + 1 but not -« - 1, so there is just one value to
exclude. For all other « , values of 'k £ 1 are both possible, so the total
number of exclusions is & - 1 . Subtracting this from the a-priori value, we
get

Ny = 22 - 432 -2) . (1u1),

Interestingly, this {s the same as N,. given by (133). values for & up to 16
are given in Table 6.

If & 1is odd, there are #(% + 1) possible values of « , so a priori the
value of My is H2 + 1)(28 - 1). There is again a single exclusion if
« = & =1, and two otherwise, so there are & basic exclusions (assuming
%2 2 3). In addition, howsver, there are & - 2 duplications when « = 0 , and
these can be discounted for Ny (though not for §b {tself - see also the
footnote in section 6.1), so the effective number of exclusions is 2% -~ 2 ;
this value applies even when & = 1 ., Subtracting this total number of
exclusions from the a-priori values we get

Ngp = 22 -HL-1), (142)

which 13 one more than for the corresponding Ngr . Values for % up to 15 are
given in Table 6.

In conclusion, {t is worth remarking that if the planetary equations are
used in Gauss's form, as opposed to Lagrange's, {and this is done {n Ref 8), then
the resulting form of the expressions for &1 and 4R is such as to provide an
gasier route to our &b (with x , rather that k , effectively involved from the
outset). For both §r and 6&w , however, the approach via Lagrange's form of
the equations is much simpler.

TR 89022

SRR

Rt A PSR T




=
(s
_..._W,m;m

6.3 The perturbation iw

The analysis for 4w is much more 1ike the &r analysis than the &b
analysis, because each UE can again be treated separately throughout. There .
are two complications, however. First, (122) effectively involves cos 2v and
sin 2v , not just cos v and sin v ({we see this at equation (143), following),
and this means that the values § =« -k £ 2 are speclal as well as j = -k 1 .
Second, we cannot take &w to be zero for any of these special cases, since the
constants In de and M must now be assumed to have been already assigned,
formula for the four special éw will he obtained in section 7.4, Actually, a
fifth special case emerges, corresponding to J = -k and a zero denominator
k +J3; &w for this case can be set to zero, since we still have (for each k)
the constant in 6w , as yet unassigned, available for the purpose - the
constants for Sw are determined in section 7.5.

We start by rewriting (122) as

& » 2972 (ge sin v + eq”! &M cos v)

+ deq 2 (86 sin 2v + eq”! &M cos 2v) + $ e2q73 &M + q~1 6L,  (143)

where ée , M and 4L are avatlable from the integrals of (76), (105) and
(106Y. The integrals for &e and &M combine in a very natural way and we get

2972 (se sin v + oq™! M cos v) = 472 Ay f By {e[%—%—%—é—% |

1-1vk (1 00 =20 . 1+ 8+ 2)
*3g ]SJ-VZlkaw‘k»JHJSJ [
1= 4~ &k 1+ 48 +x ,
‘°[3°'k_o,1—"m—ozjsj'l}» (uw |

+eq™2 (se sin 2v + eq”! &M cos 2v) = jeq ? Ay, ] Byy x [

1~8+k 1+
s

+
J

+

3
- 2k 1 -2 -k p
PR T Sy v B —,“—-Syz} s Gusy |
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i, , 1e1 -k i
$ %3 ou ‘*eq‘?“zki%{em%-z -
-+
149 -2 ) .
M i B R I i
1+ 8+ 2 1o btk -
2 T Sy41 .ekO_J*-EsJ’Z} {146y |
and
el . -2 Ay DBy TSy (17

We substlitute the last four results in (143) and at the same time {(as in
the analysis for &r ) change the interpretation of Jj 30 that we can use the
same SJ in each term. This leads to

41 - 20) + e2(5 - 1) 1+8 -2
¢J 08

+ 3e2[—-——-— + ——-————]B,"J_z} Sj . 1148) l

Though the algebra is tediovs, we can now eliminate B’.,J‘Z and 52,5-2 s
by the appropriate versions of {54). If we express the result as

S w4 Ay TAVyy By quq + Wy 0 Byy + ¥y Ly By gey) Sy (149)

the formulae for VJ', . VJ.O and V"'_l are initially very complicated, For ‘ .
VJ'1 s in partieular, we start with

26l 3(k = L+ 1) ko bev2 | Bk- 2+t |
{3+ 2+ 1)k +3+2) K+j+2 K+ +1
38k - & = 1) o3k . 2Ak- -1, |
F+L+ Dk *J) K+ K+j-1J°
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VJ,_‘ is symmetrically related to this, but Vj,o is a great deal more
complicated. All three formulae can be greatly simplified, however; for VJ,O
this was done by a technique akin to partial fractions. The resulting
expressions are
vy = 200t ¢ ) e s 2 ) s
3 k+3+2 K+ +1 k+J kK+J=-1)"°
Ve . ogiraer 21 g-2ed
3,0 k+3+1 k+J K+g =1
_2e2g¢K¢1_2”¢“‘g-go‘l '(15‘)‘
k+J+2 k+J k+j-2
and
(152)

2 3 6 1
Vit ot ae(""‘)[k‘T M I S k‘J-Z].

As a result of this remarkable simplification, it will be observed that
Vy,1 By,ger and Vg _q By 4oq 0 in (149), have been expressed in a very suitable
form for the application of (56) and (60), with 2 replaced by % ~ ! in both
relations, to eliminate 52’3‘1 and Bl.J-! ., respectively, in favour of Bt
(already present in (149)) and B,., 4 . Thus, if we now write

G = dhg I (W g Byy ¢ Mgy Beoy, )8y (153)
we get
W0 * 2[&‘—:‘?‘;-12" '2{-{—}' + 5——-—] (154)
and
Wy ® -2(1-1)[‘“;,2 Tt %
i j o M ; - 2} (155)
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The final result we require follows from the substitution of (154) and
(155) into (153). Writing SJ in full, we get

1
R R X R I N ) {[2“ $ 1) - ke DT By |

6(s - 1)
k+J+sDER+j -1

51-1,J} sin (ku' + Jv) . 156y |

Equation (156) is the general formula for 4w due to Uk . as with (131
and (140), for ér and &b respectively, it applies for all 2 2 1 ; like
(140) but unlike (131), on the other hand, values of |J| upto & -1 are
required to cover all the non-zero terms. For each k , zero denominators exist
for five different values of J : for four of these values ( J = -k + 1 and
J = =k £ 2 ), special formulae are required, in place of (156), as already noted;
only for the fifth value { J = -k ) can a term (for each k ) be actually
excluded.

Before proceeding to a pair of formulae for Ny, , the total number of
terms required to express &éw for a given value of 4 , we note (and make
allowance for) one specific null term that arises for each even value of 1 .
For k=2 and j =2 =1, we see from (156) that the coefficient of BIJ is
identically zero (i.e. independently of & ). But Bg-y,y i itself zero when
J = % =1, 8o this apecific term of 5”&.2 always vanishes. Procesding to
Ny, » We £irst note that the numder of J values for each k {regardless of any
exclusiony is 20 -1 {for all ¢ 21,

If 4 s odd, then a priori the value of Ny . is +(% + 1)(2% - 1),
There i3 one excluded value of j for each k # & , 80 there are H{(% - 1)
exclusions altogether. It follows that

Ngy = 22, (sn

and values for & up to 15 are given in Table 6.

If 2 1is even, the a-priori value of Ny, i3 #(f + 2)(28 - 1) . There is
again an excluded § for each k » L , amount.n§ to 3% basie exclusions, but
there are now two other sources of discounted term:. We have just remarked on
the particular zero term that arises for k = 2 ; wa might prefer to allow zero
actually to be computed in a general computer progras, but here we regard this

TR 89022

B

%mrl

pre




47

term as an exclusion. The other source of discounted terms consists of the
% - 1 duplications that occur when k = 0 (see the footnote of section 6.1).
Thus the number of effective exclusions is 3£ , and from subtraction we obtain

Ny, = #2-1. (158)

Values for & up to 16 are give in Tabdle 6.
6.4 Universality of results (non-elliptic orbits)

Equations (131}, (1'0) and (156) give, on summing over k or «x as
appropriate, general formulae for the perturbations &r , &b and éw ,
respectively, due to Ul . It i{s being tacitly assumed, in the rest of the
Report, that we are only considering elliptic orbits. It {s worth remarking
here, therefore, that (as follows by a continuity argument) the formulae are also
valid for parabolic and hyperbolic orbits. The formulae are effectively
univer‘sal”'.‘ in other words, though they inevitably fail for rectilinear orbits
{with infinities arising from zero p).

7 THE SPECIAL CASES, AND INTEGRATION CONSTANTS

The maln results in this section, obtained in section 7.4, are the formulae
required to supplement (156), the general formula for 6w . These formulae,
covering the cases J = -k £+ ! and -k £ 2 , are forced by the 'constants' for
Se and &M , which are determined so that certain terms (those for J = -k 2 1)
can be excluded from &r . Though we have omitted (in section 4) the full
expressions for the short-period perturbations, &g , in the elements, we give
here the adopted 'constants' for all the § . Five of the elements have
constants chosen to suit &r , éb and 4w ; for completeness, we start with
the Jemi-major axis, for which the constants are mandated by the use of a'
as I,

7.1 Mandatory constants for &a

We go back to the original expreasion for §a due to U',f , viz (63). We
can expand the complete factor (p/r)4*! in terms of the By.2,) (ef the
expansion via the BtJ {n {65)). On taking just the term of the expansion with
J = =k , we isolate the constant term that (for each k , and a given Jy ) is
mandated by taking T - a' ,
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The result can be written in the form (for the 'constant' component of

Sagy )
Sagy(e) -2aq2 Agk Bgap,k €08 Ku' . (159)

7.2 Constanis for &e and &M

The task in this section is to derive the formulae for Gelk(cj and
GMRk(c) that will legitimize our taking the terms in éry, for § = -k +1 and
-k = 1 to be zero. These 'constants' will complete the formulae, for de and
&M , glven by the integrals of (76) and (105) respectively.

We start by observing that (131), the general formula for Srox » was
obtained by combining the two different denominators from (129) and (130). If we
do not combine the denominators, we can rewrite the formula as

Srge = - HE - Dp Ay T {————-k T T 1]52_,“1 ¢y . (160)

The first denominator here is associated with the I. summation of
section 6.1, If this summation still applied for § = -k + 1, then the result
would be an infinite coefficient of By y _y.y C_ysq . We actually want this
coefficient to be -4(% - 1)p Ag, , since it will then neutralize the
coeffictent, &(% - 1)p Ay, , that arises without difficulty from the second
denominator in {160). The situation {s similar when J = -k - 1 and we want the
coefficient of Bl-1.-k-1 C.g-1 o from the second term of (1607, to be
-2 - 1Jp Ag (and not infinity) to neutralize the first term. (It is recalled
that infinite coefficlents are avoided, simply because we deal separately, in
section 5, with the relevant terms of de/dv and dM/dv .} What we do,
therefore, is to obtain the coefficients of C_k,‘ and C_p.y that would apply
in the absence of the constants 889K (e) and GMlk(cX 5 wWe can then derive the
appropriate values of these constants to cancel these putative coefficients.

So what would the first-denominator coefficient of Cj be, with
J = -k + 1, in the absence of the constants? There would then be no
contribution from equation {123), but still a cont ibution from the complementary
(124), given by éa . Its value may be obtained from the first term of each pair
in (124) - the second term does not apply because it feeds separately into the
second~denominator coefficient of C_k,1 which behaves normally as we have seen.
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But equation (124) was written down before the 'rearrangement', from (127)

to (128), in which the use of J changed. This change affects the B subscripts,

and it may be seen that the required first-denominator coefficient of C_k,‘ is
- da Ay (eBy pp * g i * 388y L)

The {normally behaved) second-denominator coefficient, on the other hand,

may be written

Fang (0-1a% By oy -

To cancel the combined coefficient by use of 6°Lk(ci and GMlk(c)q
let us suppose that

Gezk(c) = Ag X Ceg (et

and

Mygcey = My e lay sk, (162)

where x and y are quantities to be determined. On combining these for a
contridution to ér {(ef (120)), we get a coefficient of C_,,, given by

-*aAlk (x +y),
80 that one equation to be satisfied by x and y fs
2x ¢ y) + eBy pp * 4By et * 368y Lt (2= 1) Q2 Byy ey = O (163)

The compiementary contribution to &r from (161} and (162) leads to a term in
Cog-y » of coefficient

-daAy (x-y,

and this combines with two other coefficients of C_,_, , obtained as In the last
paragraph; the result is another equation in x and y,

205 = y) *+ @By o * 4By ey *38Bg oy - (L 1) a2 Byy g = 0. (168)
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Sotution of (163) and (164) gives

x = Hs - D62 (B, ey * Bgay,p) - 688y oy
= MBg ey * By eq) - 0By pan * By ) ) (165
and
y o= 00 - 1e2 (Byly ay = Byoy,opet)
= BBy ey = By, oket) < @By pup < By e} (166)
To get the formulae for selk(c) and 6Hlk(c) that we require, it remains to
substitute (165) and (166) into (161) and (162). In doing this, we make two
simplifications: we eliminate BL-I,-k+1 and Bi-l,-k~1 by use of {60) and

(56), respectively (with & replaced by £ - 1 in each case); and we write
Bl,k ete rather than Bl.-k .

Finally, then, we have

ooy = % Ay {08y pup - {8+ Kk = WIBg iy + 208 + 2)eBy,

< (2= k- W)By g+ 6By o) cos ket (167)
and

Moy = F o7l a Ay feBy up - (84 k- 1By Ly

- 2ueByy + {4 = k- BBy g = By yoa) sin ket . (168)

The formulae could, of course, be reduced to a smaller number of terms, by use of
the fixed=% recurrence relation, {54), but the coefficients would then be much
more awkward; no genulnely simpler versions of (167) and (168) have been found.
7.3 Constants for é&i and &

In this section we derive formulae for Gitk(c) and 8%y (ey tO
legitimize our taking the terms for j = -¢ + 1 and =¢ = 1 in (140), the
general expression for &b, , to be zero. The analysis is somewhat simpler than

that in the preceding section, in spite of the complexity entailed by “he need to
work with both k and « .
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As with éry, , we start by observing that (140) was odtained by combining }‘ N
two denominators, which appear separately in the preceding (139). When ’ .
3 = -k + 1, the second denominator becomes zero and no longer operates; from '
the first alone we get, as the effective term in (140), 2% Age By, el Cf;m . <
When J = -k = 1, similarly, the first denominator in (139) does not operate,
and (140) effectively reduces to &2 LY Bl,-z-l CEK’I . These terms have to be
cancelled by the use of 8lgp(qy and 8%y (e) » with appropriate k , so we
suppose that
Slgpeey = xCK (169)
fk(e) -K
and
8400y = 8V ¥ S5 . 170) :
{In the last section we were able to include Agy in the corresponding
expressions, (161) and (162), but there is no common factor available now.) On !
combining (169) and (170) for a contribution to &b (ef {121)), we get
Hx - ) Kyl dxoo vy S
1f we postpone consideration of any difficulties associated with the
extreme values of k that arise, then we get a pair of equations for x and vy ,
on {dentifying < with k + 1 and k - 1 , respectively, in the coefflcients of
c¥ .,y and C'f‘_1 that have been recorded. Thus the equations are
2x = y) ¢ LAy ey By = 0 am .
and .
2x +y) ¢ LAy B = O Qre)
Solution gives '
S 1Y PRIRY YRS ) T (173) ;
and
- - F '
¥ SRy yar = A k-1)Bg, ok am
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The expressions in brackets. can be replaced by simpler expressions, following
(21} and (28), and we also replace By <k DY By . Then substitution in (169)
and (170) gives us the formulae we require. Thus

Slyp(ey = '}Aik Byy co8 ko' (175)

and

80y (o) = Pkes™2 agy By, sin ke | (176)

We now have to show that (175) and (176) are valid for the extreme values
of k as well as ‘general vaiues'. For k = £ , the maximum value of k , there
is no difficulty: (171) involves a value of £ + 1 for «x 1in &b , but this is
all right as Bgy = 0 {cf section 6.2); thus x =y =0 for k= £ . For the
minimum value of k (0 or 1, according to whether % is even or odd), it is a
1i{ttle more complicated: we consider the two cases separately.

If % §s even, with k = 0 , Cz, and 051 are the same and we cannot
separate x +y from x - y in the combination of (169) and (170). Thus there
1s only one equation to be satisfied (instead of both (171} and (172)), and it
fnvolves only the identification of « with k +1 {not also with kK = 1 ).
The equation reduces to

x = Ay By g am,

which is consistent with (175}, in view of (29). The value of y s
{ndeterminate, but this is appropriate for the coefficient of sin kuw' , which is
itself zero when k =0 . If & 1s odd (with k = 1 ), on the other hand, the
validity of (175) and (176) follows {n essence from the argument just prior to
the establishment of equation (140), and the detalls are omitted.

A last point in this section is noted as no more than a curiosity. Whereas
the rest of 481y and 4Ry contain Ay and Af'tk , respectively, as a factor
of every term, as indicated by (79) and (82), these factors are reversed in the
*constant' terms, as indicated by (175) and (176). The point was noted, for
£ =3, in Part 1,
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T.4 Forced terms ih &w

We now have, for each U§ » only one 'constant' at our disposal; denoted by 4
6”£k(c) » 1t will be determined in section 7.5 so as to validate the nulling of g
the tern for J = -k if the formula, (156), for 6wy, . For J = -k £ 1 and 5
=k £ 2 , on the other hand, we are forced to accept non-null terms that arise,
via (122), from (167) and (168), the formulae for Segp(c) and SMy(qy . We
derlve the formulae for these terms in the present section, which must therefore ‘ .
be regarded (from the reference viewpoint) as a completion of section 6. i

For each of the four special values of J , in principle we embark on a
procedure that {s simf{lar to that euployed in section 7.2. The basis of this
procedure {s that we re-determine the expression for &w with the appropriate
terms in de¢ and &M (which in their general form would lead to infinities)
replaced by 'constants' proportional to x and y (as defined by (161) and
(162)); the only difference (in principle) from section 7.2 is that we do not
have unknowns to solve for, so that the procedure is 'direct'. In practice,
however, because the basic formula for é&w , (122), is so much more complicated
than the corresponding formula for &r , {(120), it is better to proceed a iittle
differently from this: instead of developing our four special formulae more or
less ab initio, we start four times from the (final) general formula for 4&w ,
(156), and modify it each time in the appropriate manner.

We start with § = =k + 1 ; {t will be useful to have a shorthand for the
denominator that becomes zero, so we define

d s k+§-1 1178)

for general J and will eventually set d = 0 . In terms of & , we can rewrite

{154) and (155), which on substitution into (153) give the final (156), as -
Ltk L+t  A-k+t
wo » L bl Al |
and
. 1 4 6 y 1 .
"Y,,-l » =2(% ~ 1) [m-m‘d—:‘-‘—-a-*m). (180) |




There 18 no difficulty with {179), but in (180) a zero denominator appears when

T

d 1s set to zero. We will find that this denominator disappears when the

%
*replacement procedure' {s complete. .

The terms we have to replace come from the first term of (143), for which
the general expression is given by :(UJ’J). In the latter equation the 'offending
terms' consist of the first of each palr; on changing the way J is used, as
usual, the conbination of the cl'.xree terms in question is

; 148 -k 18- 2 1-1-%
hz"zk{"kw-faz.w‘ak*3-1 BLJ‘3°k+J-1B£.J-1}SJ .

where the zero denominators are evident a3 soon as we sgt J = -k + 1 . The ,
replacement term, alao based on the f ~st term of (143), emerges when 8o and

&M are set, following (161) and (162), to Ay, X C.y and Agy e lqy Say ,
respsctively. The resulting term in S_,,q 18 Ay Q7% (x +¥) S,y (in the

analysis for § = ~k - 1 it will be the term in s_k_1 that we need), so the

required change in ¢&w is

a2 Ay fx vy o Ja7Metk - 2 - 1) By e ‘

$ 22 = 4 = 1) By oy +3e(k ¢ - 1) By I} Sy
But x +y Is given by {163), so this can be expressed as
12 g {00 = 1) @ By ey - 4780 Y 1) By yan
vel2g o k= 1) By g+ 3e(d - 0 By 0} Sy
We set J = -k + 1 1n this expression and then invoke versions of (56) and (58); .
a3 a result {t simplifies to
{ HE - 1) gy (- 2077) Be g Ly Sear -
1

Stnce only Bl-l.~kﬂ , 1.e. Bl-l,J ,, is present in this expression, the
change in &w can be represented as . changs in Wy _y (of (153) and (155)) of
amount  4(% - 1)(1 -~ 2d~1) ; thus (180) 13 to be replaced by

|

|

t W 28 - D) oms - . R (e |
g,-1 " Fac e ey I eral R e o

!
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It is now legitimate to set d = 0 fn (179) and (181), the result being

Wo = ~Ha-k+2)

and

Woap = ~¥02-10.

On substituting in (153), we get the first of our four special formulae; it can
be written (with a change of sign in the second suffix of each B ¥

g ko1 = =¥ Agellar -k« 2) By
+ (= 1) Byq g sin (' +v) (182)

The second special case is with § = <k - 1 . This is the twin of the
first case, so it involves

d e h+g e+t 1183)

and the expression for x - y given by {164Y. There is no point in a virtual
repetition of the analysis in detall, so we proceed direct to our second special
formula; {t can be written

LSRRI Apd(ae » kv 2 By 4y
+ 0= By g yal stn (W =) (184)

The symmetry between {182) and (184) s obvious. For k = 0 , of course, the
equations reduce to the same formula, and the footnote of section 6.1 is again
relevant.

For our third special case, we require to set J = -k + 2, so we start by
defining

d = kK+g=2., (185)
Then (154) and (155) take the form

Ltk ¢t

fg+ L~ k+1)
N - e S M (186)
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and

1 y 6 4 1
L A r el - el weas g S IO

with the potentially zero denominator I{n both expressions,

(187)

The terms of the general (156) that we have to replace now come from the

second term of (143), for which the general expression is given by (145).
toffending terms' are the last three of the six that occur in the latter
equation; with the usual re-interpretation of J , these three terms in
combination give

2 i s bk 143 -2 1-8-k
Teq™® Ay {e K- 200 P 2T TTE Byt P30 o2 By

The replacement term is now + Azk eq'z(x +y) s_k,z » 80 the required cha
w is

toai2 A {x ¢y « da7 etk - 2 - DBy 4o

+ 22 = &= 1) By Lgq + 30k v 2 = 1) By 3} S0

With x +y given by (163), this can be expressed as

teq? ay {(0- 1628y yuq - M el ¢ 2 - 1By 42
Y225 ¢ 8- 308y ey * 30 - - 0By L s .

The

2} Sy .

nge in

We set J = =k + 2 1{n this expression and then invoke versions of (54),

(57) and {58) to eliminate Bgo1,-k+1 + By -gsy aNd By _y in favour of
Bg1,-ks2> This simplifies the result (for the change) to

“ A AT - D k1 e By o - (- DBy kaa) Sy

It now follows, from (186) and (187), that the altered values of Wy
Wg,-1 » to be substituted in (153), are given by

vk ¢ 2+
HZ,O - Z[T-zd'?. v (L -k~=1+d)

0 and

(188)
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and
2 8 12 8
"L,-! - '(l'1)[m'm‘m-‘m‘1 . {189)
Yo can now set d = 0, getting
Weo = -HL+k+5) (190)
and
W = R0 (191)
Thus the substitution gives, for owr third formula,
g, ekez = "~ Age {302 2 K ¥ 5By o - 198 - DBy ol sin (k' v 2v) .
e (192)
Our final special case, with J = =k - 2 , 18 the twin of the preceding
(third) case and involves
d = k+J+2. 193
We will not go through the analysis in detail, in view of the symmetry, but
proceed directly to the final formula; 1t is
S ez = Ay [3(2 = K+ 5)By Lpp = 19(L - DBy_y ) sin (kT = 20)
Lo (198)

7.5 Constants for 6w

To complete section 7, it remains to determine the constant, Suwgy(ey s
that legitimizes our taking the term for J = -k 1in (136}, the general
expression for &wy, , to be zero. We already have &My (q) given by (168}, so
we only need to determine 6L1k(c) , the constant {n 5L1k , for 5“Zk(ci to be
known at once.
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We start by now deffning

d = k+J {19%)

so that (154) and (155), in their general form with potentially zero
denominators, are rewritten as

Lkt L+l L-ke+1
W0 " Z[Trz—‘z—r*—d‘-z—] ase |
and
1 4 6 4 1 p
M-t " '2“'”[a—=—z'm‘a ﬁ‘a—z) ony |

The zero denominators will disappear when, for the coefficient of S.p in (153),
we replace a quantity oceurring in the general analysis with a quantity based on
SMen (o) “elk(c) not being involved); then &Ly, oy 1s defined to null this
resulting coefficient.

The quantity to be replaced derives from the combination of (146) and
(147). With our usual re-interpretation of J , we can write the resulting
coefficient of S.p as the sum of

Feq? Ay a7l felt v 2 - 0By yup v 201 ¢ - 2By g4y
*6e(1 - L)Byy + 2(1 + & 2 2By 4y + el 4L+ k)By j-2}
and
- y -1
(=20 Ay 071 gy

associated with 4 o2 q'3 §M  and q“ §L respectively. The quantity that has
to replace this coefficient is avajlable immediately from (168), dut {t is more
convenient to back-track a little and take it instead as # eq'2 Agg ¥ 2 with y

given by (166). Thus the replacement coefficient may be written, with j rather
than =~k in the B subscripts, as

Theq Ay o By up v ¥ By quq - W By gy - @By g
= (0= e (By_y yuy - Byy,yord)
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On subtracting from this the coefficient being replaced, we get

- Ay 27T (3300 4 5 v 1By g, ¢ Ge(t ¢ 28 ¢ DBy 1y
- 208(28 - 1) + %1 - 5)1Byy + Be(k - 25 + 1)By 44
+ 3621 ~ 3+ DBy yp - 30a2 d(L = 1(Byy g4y = Byoy g_g)} -
By application of veralons of the five relations (54) to (58), we can eliminate

BL,J+2 and 51,3-2 ,, then 51'3,1 and 81’5_1 , and finally 81_1_3,1 and
51_1’3_1 . This reduces the foregoing expression to

T agy aTt{l2(8 ¢ 1) - 33a) Byy + 62 - DBy 4],

which represents {when J = -k ) the adjustment required to the coefficient of
S.x in 4w . On adding the appropriate contributions to (196) and (197) we get

[asks1 a-kst .
W0 = 2[————d e el 33] (198)
and
1 4 4 1
LI -2(4 - 1)[0—;—2- I oI d-—Z-] . (199)
We can now set d = 0 (l.e. j = -k ?h getting
Wy = 8k (200
and
Woeg = 0. (201)

These results mean that, {n the absence of Gsz(c) , we would have
K Agy By, a3 the coeffictent of S.y in 6wy ; 30, to null this, we take

Slgr(e) = - Ka Agye By sin ko' . (202)
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From (168) and the definition of % , we now get

Stpcey = T HeT A o By up - (B k- 0By
+ 2keBgy + (A - k- 8By g - e By ol sinke' . (203)

Finally, &Rg.(s) 18 given by (176), so our desired formula for Suwgp(oy 18

Sug(e) = H e Mg (o By yip - (0 vk - By gy
+ 2kes"2 By ¢ (4 -k = W)By g - e By ot sinka' . (204)

It s remarked that es fuwg(,) 48 free of singularity (as would be
expected), since Ay, contains sK as a factor, so that ks~! Ay 1is non-
singular. We also have the non-singularity of s G“zk(cj , given by {176}, for
the same reason.

8 RESULTS EXEMPLIFIED FOR & FROM O THROUGH 4

To illustrate the main results of this Report, derived for general £ (> 0) ,
we use them to derive results for the particular cases % = 1,2, 3 and 4. We
start with an analysis for & = 0, a case not covered by the general formulae -
thefr failure for & $ 0 stems from the fact that the expansion (33) is then
fnherently infinite, and not just 'effectively' so (cf Table 4Y. Both the cases
2 =0 and & =1 (analysed next) are actually trivial, since the 'perturbed
motion' can Kln each case) be looked at from a viewpoint which makes it pure
Keplerian (unperturbed). The interest in these cases then lies in the
interpretation of the perturbation formulae, which relate to the nominal mean
elements I , in terms of the 'true’ (fixed) elements of the effective Keplerian
orbit - the elements of the latter will be denoted by i -

For % =2 and 3 we write down, from the general results, the specific
formulae for 4&r , &b and 4w that were given before in Refs 1! K'Part 1') and
2. Both these papers gave also the specific f that complement ér , &b and
Sw , and Part t gave the & that underlie them - the 47 for L = 2 are well
known, having been given by many authors. For £ « 4 we summarize a complete
{first-order) solution, giving the ? as well as &r, &b and &w , the
coordinate perturbations Kerb &b, &w), like the general formulae from which they
are derived, have not been published before.
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8.1 The trivial (but exceptional) case £ = O

From (4), we have
Uy = - udg/r . (205)

This is confirmed by (15}, in which k is restricted to zero so that Uy ~ Ug ;
ag, o and Ag(l) are both unity, so Ao,o =Jy by {14). Thus the effect of
Jo is to reduce the power of the central force as indicated in Ref 4, the value
of the overall 'true' power being given by

up = u(t - Jg) . (206)

The ordit can be fully represented by ur and the 'true elements’ Sy
but it 1s instructive to exhibit the behaviour of the osculating elements {as
well as the perturbations &r , &b and 4w ) relative to the u originally
assumed. As the general results of the paper do not apply when % = 0, it is
simplest to derive formulae from the original planetary equations directly.
There are no out-of-plane effects, even as a 'trivial' phenomenon, since we at
once get

5 = 860 = & = O (207,
so that
T = 1p and T = 0. (208)
From (62) and (205) it follows that
da = a-a' = -2gr., (209)

This {s a first-order relation, as usual, with a on the right-hand side
{nterpreted as a' (= X ); it becomes exact if a2 is interpreted as aa' .
There should be no surprise that (osculating) a varie¢ around the orbit (unless
it is circular): this results from the use of the 'wrong' u ; with the 'right'
u {ur), the osculating a would have the fixed value ay . Since {with Poar)
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Up E{‘_ -;T—] - u[r—‘,-a-} - u[F-;'—-T . (210) | 5
{4 i
h 1 i
where all three expressions identify with VZL V being the orbital speed, it R

follows that ‘
ap = a'(t-Jg) (211)

this is an exact relation.

The planetary equation for p , {71), gives
p =~ 0, (212)
and it {s found best to take the integral of this to be
5 = p~P = -2Ja . (213)
Then (209) and (213) lead to the non-singular perturbation for e given by
de = @-F =« -~Jycosv; {2y
it turns out that we cannot get a simpler expression for our eventual &r by
altering the {mplicit constant {n (214), based on the explicit constant in (213),
We introduce Pr s and hence or by noting that
WP ® urPr s (215)

since both quantities identify witn h2 , where h is the angular momentum. It .
follows from this, using (206) and (213), that

pr = F - Jpall »e?) . (216)

Thence, using (211), we have

ep = B vy . @n
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The planetary equation for ¢ , (83), leads to
U
av Jg e”! cos v, (218),
and we take the integral of this to be
S = v-F = -jpelsinv, (219)

since (it turns out) we cannot get a simpler expression for &w by changing the
(implicit) constant. Hence also

60 = w-T = -Jgelsinv, 220y

We introduce wp via Vy , noting that (6), taken with and without T-suffixes
(and with rp = r ), ylelds

(p-pp)/r « (e-epfcosv-elv-vy)sinv. 221y
This leads to
veve = Jpelsinv (222
and hence (taking u = up)
w=-w = =Jgelsinv . (223)
From (220), we now see that
o = 5. (224)

The planetary equation for p , (93), leads to

L . o2g5qrm, (225)
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and this introduces a difficuily in the analysi{s for M , since (for the first
time) we effectively have a negative power of 1t + e cos v . The simplest way to
deal with the situation is to change the integralion variable* from true anomaly,
v , to eccentric anomaly, E . Instead of (225) we have

S . o2y {
= 24 5 (226)

the integral of this is evidently secular, rather than short-periodic, but for
convenience we use the notation appropriate to short-perliod perturbations and
Write (with the most useful integration constant)

8 = ~2J3E . (227)
‘ Tae secular perturbation in p, that has just emerged, 1s dealt with in

the usual way by choice of a suitable value for T , not compelled to be equal to
n' . With

Y I (LI 'Y I (228)

we naturally take
noe oy o= o0/ -4 (229)

exactly, the formula being compatible with (211), (Equation (229) is in the
spirit of (115), though not Just a particular case of the earller equation, which
is only valid for & > 0 .) Then (209) and (229) give

%% = n o= N+ Jo n(3a/r - 1) , (230)

and hence

So=omt e Jy3E - M) (231)

¥ The use of E as integration variable leads to a (finite) soiution of the
general problem when £ < 0 . The analysis {3 more complicated now, however,
as v has to be replaced by E {n occurrences of sin u , induced by the
factor P_y.y (sin 8) of U, , as well as in the basic {negative) power of
1 + e cos v that arises.
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In combination with (227) we may now write
S = Jo(E-M) = JpesinE (232)
(using Kepler's equation). Using (219), we finally get
M = M-8 =« JoeNqsinv+e2sing) . (233)
We introduce My via Ep , since from the equation
r = a{l -ecosE) (234)
we get (with r = rp , and both a - ap and e - ey known)
E-Ep = Jpelg stnv . (235)

Then subtraction of the versions of Kepler's equation for M and My , with the
ald of e - ey agaln, leads to

M=-Mp = Joel (qainv+ 62 sin E) , (236)

so that (233) yields
My = W ta3ny

Thus four of the Zp are the same as the corresponding % , the only
differences being for the elements a and e ., Further, we c¢an apply (120) ang
(122) to the &% , getting

or =~ Jga(e?q! sin v sinE - 1) (238)

and

&w = Jgeq@sinv (2 v e cos v) . (239)

In view of (207, this completes the analysis for & = 0.
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8.2 The trivial case & =1

From (4),
U = - ud -r%ain 5. (240)
This transforas t»
U)o -y ;%cos u (2u1)

by (15), in the general analysis, where

My o= 9 %s ., (2u2)

by (14), and sin B = s sinu = 8 coc u' . As noted in Ref Y4, {240) implies that
& + Uy = wlr2 + 22 - 2rz cos (4x - 01t . 00,2 {243y

where 2z = =J1R , So the overall potential is the same (to first order) as for a
central force towards the point at distance 2z , and axially 'north', from the
nominal centre of 'unperturbded' attraction. (The precise representation of this
configuration requires that for each %> 0 , Jy has a specific value, given by
-3t )

We have three essentially equivalent parometers ( Jy , Ar,qy and z Y, and
our formulae can be expressed in terms of any one of these, but it is more
convenlent to use a fourth parameter, i , defined by

A= oz/p o= -sTVAy e -0y R/D . (2uy)

Then the general formulae, taken with & = 1 , lead to the following: (131)

gives

&r o= 0 (245)
(140), with « = 0 and J = 0, gives

8 = Ac (246)
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and (182), with k = 1, gives
W = ~As cOs U . (247)

Though (247) is taken from a special-case formula (because j = -k +1 Y, the
goneral formula, (156}, actually gives the same result because the second term of
this formula, which 18 responsible for the zero denominator, does not arise. Our
formulae are consistent with (132), (142) and (157), which give

(Ny,pe Nyype Mpp) = 0, 1, 1), (248)
as seen also from Table 6.

Expressions for the &7 can be written down easily enough, following the
general analysis, but it is of more interest to obtain formulae relating the 7
(mean elements relative to the nominal attraction centre) to the 4 (unchanging
osculating elements relative to the 'true’ centre). This can be done via the ¢
{varying osculating elements) and derived quantities, si{nce no conventicnal

definitions are involved in relating the { to the Zq .

We start with (243), which may be taken to express w/rp . It leads to
r-rp = Apsing, (249)
so that, in view of (2i5),
T o« pp+Aps sinu . (250)

Now this is true for all u; but T -ap , T-ep and " - My must all be
{ndependent of u , whilst defining F - ry via {120). This is only possible if

T - oap, (251
T - e~ 2q2s sin w (252)
and
Mo~ M+ e leds cos v . (253)
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Thus we have established three of the desired relationships; (251) could
also be obtained, more directly, by identifying two different expressions for v2
(ef (210)).

We can proceed in a similar way to get the relationships for { and g.
Some geometrical visualization is needed, and we may regard the difference
between b and bT as valldly defined, independently of the precise location of
the 'mean orbital plane' which i{s involved in defining the coordinate b . This
difference is given by a projection of the displacement 2z perpendicular to the
(mean) orbital plane, such that

b=Dby = cz/r = dop/r . (254)
Then from (246),
B « bp ¢+ hce cos v (255)
(where T s actually zero, by definition, but this is not relevant to the
argument). As with (250), this is true for all u, whilst & - by nay be

expresed fn terms of T - iy and T~ 9y via (121). It follows that

T = tp+cesine (256)

and
T o« fp-ieslecosw, (25m)
This only leaves the relatlonship between T and wr to be established.
It was not obvious how to proceed, analogously to (249) and (254), via a formula
for W <= Wp, 30 the procedure adopted was based on formulae for V - v and
T - up . The first of these comes easily fron (252) and (253); thus

v o v+ die’s {o2 cos (u e v) ¢ He cos u v (2 + e?) cos o}« (258)

For the other relationship, we need the speclal formula {that can be derived for
the given geometry)

clu-uy) = sinucosull-ip) - (1-s2sialuda-ap . (259
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From this, using (256) and (257) together with the expressions (omitted here) for
&1 and 4@, we get

u-up = st {es?cos (u+v) +2cosu+ell +c?) cosw}. (260
If we introduce also the (omitted) expression for &u , (260) gives
T = up + $as™! {es2 cos (u + v) + 452 cos u + e(1 + c?) cos w} . (261)
From (258 and (261) we have, finally,
s = up - 20"l 57Ns2 - e22) cos w . (262)
It is worth remarking, in conclusion, that (262) can be used to infer the
formula for w - Wwr that seemed less obvious, intuitively, than the formula for
b~ by . We find that
wewp = {(ip/rs)cosu. {263)

Now that the miasing formula is available, 1t i3 much easier tc visualize its
geometrical {nterpretation, especially for polar orbits (s =1).
8.3 The case L =2

This time we start by noting, from Table 6 or the underlying formulae, that
(N2,ps Na,b0 Npu) = (2,2, 3) (264)

so that there are altogether seven terms in the coordinate percurbations. As in
previous papers, we simplify the coordinate expressions by using the notation K
and h , where

K = #J5(R/P)? (265}

and

h o= 1t =3, (266)
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Then Tables 1 and 2 give

A2, 0 = - dKn, 2,1 = Kes , Ap,p = WL, (267)

et o et A
PR
) P,
e e "
i onbess s sttt

s ey

and Table 4 gives

81'0 - Bz'o -1, 52'1 - 52'-1 - de . {268)

[ The two terms of &r are given by (131) with (k, j) = (2, 0) and H
(0, 0) . We get, immediately,

sr = ¥Kp(f cos 2u - 2h) , (269)

confirming equation (188) of Part 1., (The single-term variadble part of this
formula has been given by other authors, of course; the best-known derivation
was probably that of Kozal‘5h but King-Hele and Gilmore established the result
somewhat earlier, in aquaticn (A-59) of Ref 16.)

The two terms of &b are given by (140} with (k, §) = (1, 1) and
(1, =1}, stnce {1, 0} corresponds to an 'excluded term'. We get

6 = Kees {stn (u « v) - 3 sinw}, (270)

confirming equation (189) of Part 1.

For &w , we might have expaected five terus after the exclusion of
(k, §) = (0, 0) . But (2, 1) 1s an example of the specific null term given in
general by (2, ¢ - 1) , whilst the terms for (C, 1) and (3, -1) , being
identical, are combined. None of the terms i3 given by the general formula,
, (156): the term associated with (2, 0) is given by (192); the term associated
with (2, =1) 1is given by (182), and the pair of terms asscclated with (0, =21)
are aach given by either® (182) or (184), Overall, we get

& o« AK{f sin 2u + Zef sin (u + ) + 8eh stn v} , (z1)

confirming equation (190) of Part 1.

., * In writing down specific formulae for & and & wher & {2 even and

. % zero, we must always remember to double the coefficient of each term with
N § » 0, when our intention is to cover the corresponding term with «J

' (ef the footnote of section 6.1).
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The long-term motion, for & = 2, comes entirely from the secular rates of
change, &% and %, given (from section 5) by -Knc and Kn(4 ~ 5¢)
respectively. They are quoted here, only to remind the reader of the additional
&b and 4w that they induce. Ir Part 1, these
terms are included in equations (194) - (196), as opposed to equations
(188) -~ (130); the intervening equations, (191) - (193), refer to the velocity-
coordinate perturtations, namely, ¢F , &b and &w .

tcarry-over* terams in dr ,

Finally, of course, since Jz for the Earth is of order /Jy for &> 2,
H the perturbations of order J22 have to be taken into account for Earth

1 satellites. Part 1 gives a detailed analysis of these perturbations, and the
resulting formulae constitute the prinecipal results of that Report: equations
(320), (343), and (359) of Ref 1 give the contributions to ér , &b and 4w ,
respectively, whilst the long-term effects are covered by equations (297) to
(309).

8.4 The case & =3

From Table 6,

(N3,rv N3,po N340 = (5, 6, 9), (2712
30 that there are 20 terms, in total, in the coordinate pe~turbations. As in
Part 1 we write
B o= Hi3 3. (273)
;
Tables 1 and 2 give
l A3 0 = dHe(2 -5f), A3,y = -tHs(4 -51), (27%)
i N A3,2 = - 4Hte, A3,3 = g HSf; (275)
i
i .
' N also Table 4 gives, in additinn to quantities we already have from (268},
i
. - 2 - - 2,
RS B30 = 1rde?, B3y - e, By o+ de (276)
. ]
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We start with ér , separating (for convenience) the effects for k = 3
and k=1. For k = 3, all the a-priori values of J must be included,
namely, 1, 0 and -1; for k = 1, on the other hand, we exclude § = 0 . Then
(131) gives, corresponding to the two values of X ,

§r « <beHpsf {Ue sin (3u + v) + 15 sin 3u + 20e sin (2u + w)} (211

and
&r = gHpes (4 - 5¢) {sin (u + v) - 3 sin w} ; (278)

these conform with equation (408) of Part 1. (The total &r {s, of course,
giten by adding the two contributions.)

For &b , the effects are for x =2 and x = 0, and the a-priori values
of J arethe fivewith |[J] S 2. For ks« 2 weexclude J = -1, and for
K+ 0 weexclude J = #1 ; for x = 0 we alsu lose a term on combining* the
terms with J = £2 . Then (140) gives, corresponding to the two values of « ,

& = - FHof {262 cos 2(u + v) + 15e cos (2u + v)

+ 20(2 + 82) cos 2u - 3062 cos 2u} (219)
and

b = - gHe(2 - 5r){e? cos 2v - 3(2 + &)} ; (280)

these conform with equation Khl!)‘ of Part 1.

For éw , the effects are for k = 3 and k = 1, with the same a-prior{
J values as for b, For k = 3, all five values yield terms, but only three of
them come from the gerieral (156); for J = -1 we use (192) and for j = -2 we
use {(182). For K =« 1, the term with ! = -1 1s excluded, and the only general
term s for § = 2 ; the terms for J =1, 0 and -2 come from (192), (182)
and {184) respectively. Corresponding to the two values for K , we get

* In contradistinction to the previous footnote, and as noted in general after
(141) in section 6, the two terms do not have the same numerical coefficient.
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W = - -ﬁ.—Hsr[Zez cos (3u + 2v) + 11e cos (3u + v)

+ 3(5 + e2) cos 3u + 25¢ cos (2u + w) + 50e2 cos (u + 2u0)} (281)
and

Sw = FHs{h - 5£){e? cos (u + 2v) - 2¢ cos (u + v)

- 2(18 + Te2) cos u + 9e2 cos (v - w)} ; (282)

these conform with equation (413) of rart t.

Expressions for the long-period rates of change of the mean elements can be
written down from the formulas of section 5. The results agree with (from Ref 1)
(373),, (376), (38%), {389) and (399), for &, 7T, %, T and N, respectively.

8.5 The (new) case £t = &

From Table 6,
(Ny,po, Ny oo, Nyud = (31, 11, 15, (283)

so that there are altogether 37 terms in the coordinate perturbdations, which we
obtain first. To simplify our expressions, we define

G o= medy (Rt (284)
Then Tables | and 2 give
Au,o = 48G(8 - bor + 3562), Ayy = 480Ges(a ~ 7¢) , (285)
Ay,2 = -3206f(6 - Tf), Ay,3 = ~1120Gesf, Ay y = 5606f2 ; (286)
also Table 4 givses, in addition to quantities we already aave from (276),

Buo = ' +de?, By - delt +ed), By, - B2, By 3 = te3 .(28M
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and k=0.
All values apply when k = 4 ;
we exclude j = #1 , whilst the terms for J = £2 are identical.
gives, corresponding to the three values of k ,

We start with ér , as usual, separating the effects for k =4, k=2

The a-priori values of J are the five values for which [J]| s 2.
for k=2 weexclude §J = -1; and for k=20
Then (131)

or = =2Gpr2 {6e2 cos 2(2u + v) + 35e cos (4u + v) + 28(2 + e2) cos Uu

+ 1058 cos (3u + w) + 7082 cos 2(u + w)}

or = «8Gpf(6 ~ 7r){2e2 cos 2(u + v) + 15¢ cos (2u + v)

+ 2002 + e2) cos 2u - 30e2 cos 2u}

and

&r = -24Gp(8 - 40f + 3562){e2 cos 2v - 3(2 + )} .

(288)

(289)

(290)

(The dominant (e-free) terms of (288) and (289) were originally given in equation

(A108) of Ref 16.)

Ao g

e bt - e~

For &b , the effects are for

®x=3 and x = 1, the a-priori values of

J Dbeing the seven with

4l s3.

For

ket

we exclude J =0 and J = =2 .

Kk = 3 we exclude J = -2, and for
Then {140) gives, corresponding to the

two values of « ,

6 = =-U4Geosr {483 sin 3(u + v) + 35¢2 sin (3u + 2v)

+ 28e(4 + e2) sin (3u + v) + 70(2 + 3e2) sin 3u

+ 140e(k + e2) sin (2u + w) - 140e3 sin 3u} (29)
and
6 = =-4Gos(4 - 7£){4e3 sin (u + 3v) + 45¢2 sin (u + 2v)
+ 60e(t + e2) sin (u + v) = 180e(4 + ¢2) sin w
- 203 sin (v - W} . (292)
For &w , the effects are again for k = 4, 2 and 0, with the same
a-prior! J§ values as for &b . For k = 4, all seven J values yfeld terms,
of which five come from the general (156), for J = -2 we use (192) and for
J = -3 we use (182), For Kk » 2, the term with § = -2 is excluded, whilst
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for 3§ = 3, (156) gives another example of a 'specifically null' term (as in
section 8.3); there are non-null general terms for J = 2 and J =1 ; and the
terms for j = 0, -1 and -3 come from (192), (182) and (184) respectively.
Finally, for k = 0 the term with Jj = 0 is excluded; the other terms come in
pairs, being 'general' for J = #3 , from {192) and (19%) for J = #2 , and from
(182) and (184) for J = &1 . Corresponding to the three values of k , we get

ow = =-Gr2{ued sin (Su + 3v) + 312 sin 2(2u + v) + 4e(21 + 5e2) (x)
x sin {4u + v) + 28(3  4e2) sin 4u + 28e(7 + e2) sin (3u + w)

+ 175e2 sin 2(u + w) + 140e3 sin (u + 30w} , (293

sw = 3GE(6 - 76) (202 sin 2(u + v) + He(5 + 2¢?) sin (2u + v)
+ 5(8 - 7e2) sin 2u - 806(5 + 62) sin (u + )
- 40e3 sin (v - 20} (294)
and
& = 4Ge(8 - 4O + 3502){2e2 stn 3v - 3e sin 2v
- 6(24 + 5¢2) sin v} . (295)
It only remains to give the expressions for the 'e' {secular and long-
period) from section 5. They may also be derived {as a check) from the auther's

early Ref 4; also, the version of Kepler's third law, given here as (303),
checks with equation (15) of Ref 3.

There are, of course, no secular rates of change in ¥ or T . Thelr
long-period rates are given by (108) and (109), with just k = 2 ., Thus

% « -480 Gneq2f(5 - Tf) sin 2w (296)
and

T - 480 Gnes(6 - 7r) sin 20 . (297)
The secular rate of change of T , given by {110) with k = 0, is

B - 480 Gao(d - 76)(2 + 3ed) , (298)
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and the long-period rate (given just with k = 2 ) is
f = -960 Gne2e(3 - 7r) cos 2u -

For the variation of @ , we work with % ., 8iven by the second term of
{111}, Thus the secular rate is given by

§ = -120 Gn(8 - HOL + 35¢2)(4 + 3e2) ,
so that from (298) and (300) the secular rate for @ is
% = «120 Gn{4(16 - 62 + 49r2) + 902(8 - 28f + 21£3)} .
Similarly, the long-period rate for ¥ 1is given by
% = -240 Gnf(6 - 7£)(2 + Sed) cos 2 ,

from which the rate for U 1is at once available.

Finally, for the variation of M , we deal with the secular perturbati
the modiftcation of Kepler's third iaw given by {116). This gives

n2 a3 o {1+ 288Ge3(8 - wor + 3509)}
based on the perturbation rate (residual to the mean motion)
B« 134 onq3(8 - 4or + 35r2)
given by (113). Agatn, the long-perlod rate, from (113), is given by
B = 480 Gng3f(6 - 7f) cos 2w :
this checks with (302) and the long-period rate for T , which from (114) is

€ « -1680 Gne2qr(6 - 7f) cos 2w .

mwr

(239

(300)

(301)

(302)

on by

(303

(301)

(305

(306)
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For completeness in implementing the (first-order) effects of Jy (and any
other Jy ), it is necessary to incorpérate terms relating to what Part 1
describes as the difference between mean and semi-mean elements. The effects
induced by the secular variation are included by adding (B/nim , (&Mmm and
(/) to W, & and M, respectively, where §, & and H are given by
(298), (301) and (304), and where m = v - M as in Part 1. The effects induced
by the long-period variation, on the other hand, are allowed for via additional
terms in the expressions for ér , & and &w . Using (120) - (122), we find
that these additional terms are given by

sr = 480 Gpenf(6 - 7f) sin (u + o) , (307

sb = 240 GeZmes {3(4 - 7f) cos (v - w) - Tf cos (u + 20} (308)

and

S0 = 240 Gemf(6 - 7f){e cos 2u + 4 cos (u + w) - Ye cos 2w} . (309)

9 CONCLUSIONS

The main function of Part 1 of the present trilogy of Reports was to
provide details of a new theory of satellite motion, largely based on the use of
a particular system of spherical-polar coordinates in the representation of the
short-period components of the orbital perturbations. The emphasis was on the
derf{vation of the second-order perturbations due to the zonal harmonic Jz , but
the first-order perturbations due to J3 were derived as well. The latter
derivation has now been extended to an arbitary zonal harmonic, Jy (where %
is positlve)'.‘ with the development of general formulae of which those for J3
were just a particular case.

The main formulae, which {in their generality) are believed to be entirely
novel, are those for the perturbations {n coordinates. The general terms of
these formulae are given by the summations in (131}, (140) and (156), for the
perturbations tn r , b and w , respectively. Terms that would have a zero
denominator are excluded from these summations, as a consequence of the optimal
definition of mean elements, except that replacement terms are needed for the
perturbations in w ; the formulae for the replacement terms are (182), (184),
(192) and (194).
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The formulae for coordinate perturbations are complemented by the formulae,
given in section 5, for the rates of change of the mean elements. In principle,
the integration of the rate-of-change expressions is immediate, leading to the
secular and long-period perturbations in the elements. In practice, however,
there are complications, as was indicated in Part 1. One of these complications
results from the fact that the expressions really arise as rates of change with
respect to true anomaly, rather than time, and this leads to additional effeccs
that are short-pericdic in nature. However, the difficulty can easily be dealt
with via the concept of semi-mean elements; the matter was fully discussed in
Part 1, and has been touched on here in the context of the derivation of the
appr opriate perturbation terms for ¢ = 4 (sectfon 8.5). The other
complications arise in the long-term evolution of the mean elements, the chief
source of difficulty being the well-known singularities in the standard set of
elements. A preliminary consideration of these difficulties was inciuded in
Part 1, but a full analysis is held over to Part 3, which will also give some
numerical results.

The main limitation of the theory presented by the trilogy is apparent from

its overall title - the gravitational fleld i{s assumed to be axi-symmetric, i.e.
represented by zonal harmonics alone. For a complete field, with the tesseral
harmonics included, the author has already published some general formulae (in
terms of cylindrical coordinates rather than spherical coordinates, though that
fs a minor detail), but they apply only to near-circular orbits. The formulae
were originally given in Ref 10, then in Ref 5, and finally as equations (92) -
(94) of Ref 9.

In the formulae referred to, the inclination functions involve an
additional suffix, m , to cover the longitude-dependent harmonics. For m = 0,
the functions reduce to the AE(iI and A2k of the present paper, whilst the
formulae themselves are then equivalent to truncated versions of the present
equations (131), (140) and {156). Since we now have one set of formulae that
relate to all inclination functions, though the formulae are truncated in regard
to eccentricity, and another set of formulae that are valid for any eccentriecity,
though only relating to lnclination functions for which m = 0, an obvious goal
is the derivation of formulae that are 'general' (n both respects. There is a
fundamental difficulty, however, arising from the rotation of the gravitating
primary, which we are able to neglect in the trilogy because {t {s assumed to
take place about the axis of symmetry.
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The root of the trouble is that the disturbing function (U) {s no longer
time-independent when the rotation of an arbitrary primary {s allowed for. This
nullifies our key constant, a' , and leads ipso facto to the important
ph on of r 13, It will not be easy to develop a unified theory that
covers resonant effects by the same formulae as non-resonant ones. However, a
starting point is obviously the generation of the formulae referred to (in the
preceding paragraph) as being 'general in both respects'; Appendix A gives an
outline of what is invoived.
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Appendix A

EXTENSION TO THE GENERAL GRAVITATIONAL FIELD

ot s A SRS e Vo

Extending the theory of this Report to the tesseral harmonics (sectorial
included) {s an easfer matter than might have been expected, 30 long as the
rotation of the gravitating body is neglected; 1i.e., we suppose the sidereal
angle, v, to be fixed. We assume the potential to be described by the usual
harmonic coefficients, Cym and Sgy , Where -Cy o can be identified with the
zonal coefficient Jy and Sy o is taken as zero. For convenience, we
introduce the polar equivalents, Jgn and Agp , where A 1s longftude and

(Come Sgm) = Jom (cOS mAgy, sin migy) . (a-1),

(Note: Agy s not uniquely defired if m > 1, and if m =« 0 we set

Jg,0 = ~Jg o 80 Jg,0 must be allowed toO be negative.) It is usual, in ;
practice, to work with normalized versions of Cy, and Sy, (and hence Jom Vs, f
but this is an irrelevant complication here. The potential due to Jgn , 3
generalizing equation {4) of the main text, is given by

Upn = £ Jgm (R/r)% P(sin 8) cos m(x = Ayg) . (a-2)

The expansion of Upp , In terms of the orbital elements, {s customarily
based on the family of inolination functions, Fypo{1) , such that, generalizing
equation (8),

)
Pl(sin 8) exp (1mi) = Zo Fomp(1) exp 1{(% = 2p)u ¢ i - v)} . (r-3)
p-

As already indicated in the main text of the Report, however, we prefer to use
the index k (= & = 2p) , rather than p . This index only takes values that are
of the same parity as % , but In the extension to m > 0 we have to allow
negative values of K , 30 that {ts range is now from -% to +1; as
compensation, we no longer require the factor uy introduced at equation (8).
further, we prefer the inclination functions to be real for all values of the
indices, so we defline, as an unnormalized equivalent of the ?Em(ii in Ref 9,

Fipll) = O Fanpl) (-4 .

—
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The Ugy expansion will involve Q , as well as the other elements, to reflect
the abandomment of axial symmetry, but for convenience we work with Q' , defined
by

Q= Q-v-dx. (A-5)

Then Ugy can be decomposed into E uk, , where
uk, - B (R ggy Fp1) cos fiur + m(a = agal} (a-6)

this {s compatible with equation (71) of Ref 9, in which Y and X were the
negatives of the present u' and Q' . (Compatibility with two other papers can
be obtained by noting that FEm here {8 1%*K times the unnormalized equivalent
of the Fynp uved in Ref 13, whilst Fypp in Ref 17 is identical with Fomp
introduced at (A-3) here.)

Next Je introduce quantities Apn, that directly generalize the Agy of
the mai  sxt, defining

Agmk = =Jgp (R/D)E th(15 . (A-T)
K

We also generalize cJ and s? ,, by defining

C§Mk « cos [Jv + ku' + a(a' - Agg)]

sfmk « ain [Jv + ku' + (@' - Agg)d ) (A-8)

and henceforth we will omit the superfixes.

Then {A-6) to (A-8) give
U%m - - % (p/r)l‘1 Agmk Co » (A-9)

which {3 a stralght generalization of equation (15) of the main text. When
m S k , we can also generalize the preceding equation (14) by writing

Mgk = -dgm (/DI agmy K72 (1 v ) AK (1), (A-10)
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where Aﬁm(li is from the family of 'normalized' inclination functions
introduced in Ref 17 to generalize the Ai(i) ), and  agme generalizes agy ;
the formula for agmy can be inferred from equation (11) ihid. It then follows
frem (A-7) and (A-10) that '

T At

Fiall) = agg 8B 01 4 o) A1) L (a=11)

It was assumed, in (A-10), that m Sk . When 0SKksm, adifferent
generalization became necessary in Ref 17, leading to

Aggk = dip R/PY agpy 877K (1 4 00K AW, (A-12)

where now the formula for ugpk can be inferred from equation {13) ibid; also
(A-7) and (A-12) lead to

Fiatt) = agme ™K (1 0K A 01) . (2-13)

For k =m , (A-12) and (A-13) are consistent with (A-10) and (A-11) -
respectively, but otherwise the dual definitions of Azm(lﬁ and apyy are
distinct. A further complication is that an extension of (A-10) and (A-11) to
negative Kk 1s not generally available; (A-12) and (A-13) still operate for
k<0, with |k| s m, but there is a marked lack of symmetry between the forms
of Afm(i) and agmg for k < 0 in relation to Kk > 0 . The difficulty for
negative Kk is not too serious, however, as Ffmlli can then be derived from

) v (R EE -y (A-12) '

By appeal to (A-14) as required, the Agmy ccn always be obtained. There
are advantages in the adoption of a different 'normalization' for the Azm(i) N
however, such that they constitute a fully unified family of functions, defined
for ali k and symmetric {n regard to the sign of k . The constants agmy
nust then also be redefined, to preserve trne Aggy uncnanged, and the connecting .
form. ae {s based on {A-12) rather than (A-10), e int1oduce a variable sign
into {A-12), to make the agy. always positive; expressed symmetrically in
regerd to the sign of k , the connecting formula is then

K
Afa (1) . (a=15) |

o)

A = (TR g R s sm[
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The new A{m(xl are defined for % 2m , as before, but for all k now,
not just for |k} s & (quite apart from the problem with k < 0 J. The
recurrence relation for fixed m and k is

(2 - 192 - mafy - (20 - DL = Do -k} Aoy g :
L
eafte-02-x2 &, - 0, (A-16) '

which is slightly simpler than the relation in Ref 17; the starting values for '
this are

AL = 1 and A%, (1) = (@ Do-k, (a-17)

though the second of (A-17) can be dispenged with if we define Ag_1,m(i) to be
2ero. A recurrence relation for fixed % and m 1is also available, viz

(- 00+ NG - 2m - kedafy ¢ (o0 - R - 0, (1B

in which the symmetry (in regard to the sign of k ) is obvious; expressions for
Aim(si , with |kl < &, can bs generated 'from either end' by use of just one
starting value from the palr

AYY - e s NP (2, (A-19)

There is alsc a recurrence relation for fixed £ and k , but instead of giving
| it we note that “he set of 15 relations, each involving Azm(lj and two
; radjacent' tunctions from a three-dimensional table, can all be generated from
f various subsets of just three relations; one of the simplest such subsets -
consists of (A-18) and the following pair of relations:
(U+ KIRE Ly = (moe 20N, + 201+ edAf! - 0 (4-20)

and

2 -m e DA e 00 - Ry - (- 0 e sl - 0 a2

(Note in proof: see Refs 19 and 20 ror computational aspects of these relations.)
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We will not enlarge on the advantages of the redefinition of A%m(x) and
agmk s, DUt two disadvantages must be menticned. First, since the factors fn s
and ¢ in (A-15) can be combined as (1 + c)HmKI(1 - )HmK) | e sen that a
negative power of either 1 +¢ or 1 - ¢ appears whenever m < |k| , and this
has to be cancelled by a corresponding positive power that is present in the new
Aim(lk . Second, the use of (A-16) and (A-17) to compute AEm(1$ under these
eircumstances (m < |k|) 1s Inefficient, since the recurrence process has to
work through the unwanted functions with m < 2 < fk| .

The AEm(iﬁ are, live the Az(li of the main text, defined regardless of
parity. The constants appy (and hence the quantities Agmy )} are only defined
for % and K of the same parity, however, and (as redefined) their only
property to be stated here is that of complete symmetry, so that

oy = ok (>0 . (a-22)
But, just as in the main text, we require another set of constants, ogp. , and
quantities, Agpm. , defined when £ and Kk are of opposite parity, to allow the
formula for &b to be expressed. The connecting formula corresponding to (A-15)
is

(A-23)

, - k23
Agme = (FERD G kg am [‘ 2 °} M)

T-c)

The agy, are avallable at once from the agp. , since {cf (26) of the main
text, which, because of the redefinition, is not being directly generalized)

Yme * Ch-l,m,k ¢ (a-2%)
Tables and further properties of the redefined inclination functions, and the
associated constants, will de given in a separate paper.

By making use of the quantities Apme and Agye -~ we find no difficulty on
extending the theory, largely Decause the treatment of {p/r)2*! , {n (a-9), via
the 815 + goes through unchanged from the main teat. Further, the energy-based
exact quantity, a' , 1s still available, followirg the assumption that the
attracting body does not rotate. Thus, equstions (65), (76), (88) and (105), for
sa , de/dv , dy/dv and ¢M/dv , -~espsetlively, are uvnchanged apart fros the

appearance of Agne 1n place of Apn . Equation (€2), for da/dv , raquires a
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corresponding change, such that the derivative Aimk replaces Aim . This just
leaves (79), for di/dv , for which a slightly more ~.mplicated expression is now
required, to reflect the fact that pc2 1s no longer an invariant. We have, in
fact,

2
955:’,—)- - 2mpe Agne I Byy Sy . (A-25)

From this, using the versicn of dp/dv corresponding co equation (74), we get

Lo s Mke - m) Ay I Byy S s (a-26)

in comparison with equation (79), we see that the only additional change is the
replacement of k¢ by ke = & .

Six of the seven formulae that define 4&r , &b and éw completely, for
..¢ zonal harmonics, are immediately applicable to the zonal harmonics, so long
as  Agmi replaces App and the trigonometric argument includes the tern
m(8* = Ayp) . These six are (131) and (156), for the general ¢ér and & , and
(182), (184), (192) and (194), the four special formulae for 4w . In the
seventh formula, (140) for &b , %Ay, must be replaced by (& + mlAgyc , In
addition to the inclusion of the extra term in the trigonometric argument. (It
{s, perhaps, suprising that the change to (140} is as slight as this, but it
would have been even less {f Ay, and Agy, had beer defined to include the
factors £ and % +m respectively; the rsason for excluding these factors
was, essentially, to give a degree of homogeneity to (26) and (A-24.)

Finaily, of course, the numbers of terms {n 4&r , &> and &w , for a
given Jyn , are greater for m > 0 than for m = 0, to reflect the distinction
between positive and negative X . These numbers are otherwise independent of
m , however, in consequence of which we write the formulae as follows:

N = 22-3241, (a-27)
Ny, = 212-31+2 (A-28)
and
282 for odd & )
N}, . (a-29)

2(22 - 1) for even &
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THE QUANTITIES By , AND Bg,q IN PARTICULAR

When j 20, BLJ may be expressed in terms of the hypergeometric
function as:

By = 125‘)(1/2>JF{5"2‘". 1oyl J*l:ez) o By

where (B-1) applies for all & . This result {s proved, in terms of the function
Bi(eﬁ » in Appendix E of Ref 4; it is also quoted, in terms of the equivalent
Hansen function, at equation (32) of Ref 8. For (0 S ) J < &, (B-1) gives a
polynomial in o2 i for J 24 >0 it glves zero; and for £ 50 it gives a
power serles in o2 , which can be transformed into a closed expression involving
q (= /(1 - €2)) and perhaps 8 (= e/(1 + q)) . All this is consistent with
Table 4.

Equation (B-1) breaks down when J < 0 , owing to the eventual occurrence
of a zero denominator when the hypergeometric function is expanded. Since

Bpy = Bg,-3 (B-2)

however, this break-down is of no account. The justification of (B-2) comes from
the Hangen-function equivalence and the relation

L L, .
X xhd (83)
which follows immediately from the definition of Hansen's functions by equation

(35) of the main text.

The quantity Eg,q 13 of particular interest, being the simplest of the
Bgy that involve £ . Once {t {s known, the other such Bpy can be
progressively derived using the recurrence relations of the main text.

From (B-1) we have

Bo,1 = - feF(1, 1k 25 ed) . (B-4)
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But as a particular case of the hypergeometric relation proved as equation (9.2)

of Ref 18, we have

F(1, 14 2; 62) = 207'R(E, 15 & D) - 2F(1, 14 1k @d)

Also, it 1s immediate (from the expansion) that

Fla, b; a; @@ =« {1 -q®7P,
independently of a , so that (B-5) gives

F(t, 14 2; €2 = 2/q(1 + Q) .

Flazlly, (B-4) and (B-7) give

in conformity with the entry in Tadble 4.
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THE QUANTITIES Eg
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LIST OF SYMBOLS

(Usage for the main text only)

semi-major axis

energy-based fixed value of a

*normalized' function of inclination
quantity, based on AK(1) , defined by (14)
stmilar to Agy , but defined by (17}
derivative of Ajpc with respect to i

ke=l age £ 2™ A

latitude-like spherical coordinate of (r, b, w)
normalized function of eccentricity
quantity related to Bﬂ(e)' , defined by (32)
derivative of BEJ with respect to e

cos 1

cos (Jv + ku') {dtfferent meaning fn Part 1)

shorshand for k + J -~ 1 ete in sections 7.4 and 7.5

{nelination function, quoted from Ref 4

eccentricity

eccentric anomaly (only required in section 8)
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Ei(e)

Egy

9y
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LIST OF SYMBOLS (continued)
eccentricity function, quoted from Ref 4
quantity related to Ei(e? , defined by (u8)
sin?y
ke dy (R/p)¥ (in section 8.5)

angular momentum (but 1 - ¥¢ in section 8.3)

¥ 3 (R/p)3 (in section 8.4)

inclination
index asscciated with multiples of v
zonal harmonic coefficient for the Earth

index assoclated with multiples of u
+ J2 (R/p)2 (in section 8.3)

index of Jy
quantity such that L =M+ qy = n+p

v = M in section 8.5 (and Part 1); otherwlse an arbitrary
integer

mean anomaly

mean motion
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We will require derivatives of the inclination functions. It 1s evident
from (10) that

4,k O N ORI IR
i (Al(i)} * T Uar A (1), (18)

feom this and (14) it follows that the {partial) derivative of Agy with respect
to 1 1is given by

R = 9y (/DY gy K] {kc Ay - Bolb e ke D, A'g”(i)} L9

where f = 32, Tne quantity in {curly) brackets is the DX(1) of Ref 4. We

will also require, finally, the particular combinations of Alk and AiK
denoted by Ay, and Ay , and given by

A = kel ag £ o7l Ay, (20)
the s~ and ¢! factors do not 1mply singularities, as they must always
cancel via k Ay, and Ag, respectively.

The Af(1) and ag, (and hence the A, ¥ may be computed with the aid of
recurrence relations. A fixed k was stipulated in Ref Y for the formula

Goer ) - @ - D e Al - -k - D AL . (21

valid for £ 2 k + 2 with the starting values Ai(i) =1 and Aﬁ,1(i) -
(21) is even valld for & =« + 1, if an arbitrary (but finite) A§_1(1) 18
assumed. However, it 138 usually more useful to stipulate a fixed 4 , the
required formula was giver by Merson!l, being

) - okt -G Bk D a2

valid for & - 22k 20 with the starters A%(i) -~ 1 ang A%"(i) - ¢

(22) 18 also valid for k = & - ', With an arbitrary (fimte) A%"(x) . Either
of the two preceding 'pure’ three-term recurrence relat.ons, (21} or (22;, can be
usea with just one 'miged’ such relatinn to generate all the relations connecting

the Az(x; , perhaps tne simplest mixa1 relation (With neither & nor K fixed)
13

TR 89022




Ny po Noos Npow

Pyl )

X
PR )

Qy.((e)\

Ry (for lej)

s¥ (or 59

Ty (for Toes)

u'

Yy

K
Uy

LIST OF SYMBOLS (continued)
number of terms {for given &) in ér, &, &
parameter (aemi-latus rectum) of orbit
Legendre polynomial (of argument suppiied)
Legendre associated function
/(1 - ed)
normalized eccentricity function quoted from Ref 3
radius~vector ccordinate of (r, b, W)
Earth's equatorial radius
quantity defined by (125) (differeat in Part 1)
sin i
sin (Jv + ku') (aifferent meaning ia Part 1)
time
quantity defined by (137)
argument of latitude, v +w
modifier u (= Vv +w' = u - dn)
potential due to Jy

component of Uy
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LIST OF SYMBOLS (continued)

true anomaly

orbital speed (used only in section 8)
quantities introduced at (149)

1ongitude~-like spherical coordinate of (r, b, w)
quantities introduced at (153)

general unknown quantities (different in Part 1)
generic Hansen function (of eccentricity)

~J1 R (section 8.2)

fixed constant, defined by (12)

fixed constant, defined by (16)

geocentric latitude {deciinatisn); o/(1 + q) in section 3
symbol for pure short-pe. {od perturbation (5,, in Part 1)
generic orbital element (osculating)

mean element corresponcing to ¢

semj~mean element

rate of change of Ty due to Uy
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LIST OF SYMB?LS (concluded)
index related to k, but of opposite parity
~Jq R/p (section 8,2)
Earth's gravitational constant
quantity such that p = & + qb
modified mean anomaly at epoch
sumation (different use of T in Part 1)
1ifk=0,21f k>0
quantity such that @ = & + cf
argument of perigee
w=dn

right ascension of the node

Jn at
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